These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9064611)

  • 101. Spinal cord ischemia and motor evoked potentials.
    Doyle DJ
    J Clin Monit; 1990 Oct; 6(4):339-40. PubMed ID: 2230865
    [No Abstract]   [Full Text] [Related]  

  • 102. Compensation for injury potential by electrical stimulation after acute spinal cord injury in rat.
    Zhang G; Wang A; Zhang C; Wu C; Bai J; Huo X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3634-7. PubMed ID: 24110517
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Interstitial and tissue cations and electrical potential after experimental spinal cord injury.
    Leybaert L; De Ley G
    Exp Brain Res; 1994; 100(3):369-75. PubMed ID: 7813675
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Spectral analysis of corticomotor evoked potentials in spinal cord injury. Part 2. Chronic studies.
    Simpson RK; Contant CF; Robertson CS; Goodman JC
    Neurol Res; 1993 Dec; 15(6):373-8. PubMed ID: 7907403
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Transplantation of adult spinal cord tissue: Transection spinal cord repair and potential clinical translation.
    Lin H
    Sci China Life Sci; 2019 Jun; 62(6):870-872. PubMed ID: 31124004
    [No Abstract]   [Full Text] [Related]  

  • 106. Therapeutic interventions following mammalian spinal cord injury.
    Rabchevsky AG; Smith GM
    Arch Neurol; 2001 May; 58(5):721-6. PubMed ID: 11346366
    [No Abstract]   [Full Text] [Related]  

  • 107. The 'motor' inaccuracy in neurogenic motor evoked potentials.
    Deletis V
    Clin Neurophysiol; 2001 Aug; 112(8):1365-6. PubMed ID: 11459675
    [No Abstract]   [Full Text] [Related]  

  • 108. Brisk movement imagination for the non-invasive control of neuroprostheses: a first attempt.
    Müller-Putz GR; Ofner P; Kaiser V; Clauzel G; Neuper C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4219-22. PubMed ID: 22255270
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Spinal cord fusion with PEG-GNRs (TexasPEG): Neurophysiological recovery in 24 hours in rats.
    Kim CY; Sikkema WK; Hwang IK; Oh H; Kim UJ; Lee BH; Tour JM
    Surg Neurol Int; 2016; 7(Suppl 24):S632-6. PubMed ID: 27656326
    [TBL] [Abstract][Full Text] [Related]  

  • 110. A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats.
    Harland B; Aqrawe Z; Vomero M; Boehler C; Cheah E; Raos B; Asplund M; O'Carroll SJ; Svirskis D
    Adv Sci (Weinh); 2022 Jul; 9(20):e2105913. PubMed ID: 35499184
    [TBL] [Abstract][Full Text] [Related]  

  • 111. [The electrical activity of the spinal cord of mammals related to shock].
    HORSTEN GP
    Acta Brevia Neerl Physiol Pharmacol Microbiol E A; 1948; 16(1-4):42. PubMed ID: 18892263
    [No Abstract]   [Full Text] [Related]  

  • 112. A minimally important treatment effect is a key but illusive concept.
    Harvey LA
    Spinal Cord; 2019 Feb; 57(2):83-84. PubMed ID: 30710143
    [No Abstract]   [Full Text] [Related]  

  • 113. Treatment burden.
    Harvey LA; Åhrén GM
    Spinal Cord; 2019 Aug; 57(8):615-616. PubMed ID: 31375784
    [No Abstract]   [Full Text] [Related]  

  • 114. Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats.
    Huang Z; Li R; Liu J; Huang Z; Hu Y; Wu X; Zhu Q
    Neurosci Lett; 2018 Jan; 664():116-122. PubMed ID: 29138091
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.
    Bazley FA; Maybhate A; Tan CS; Thakor NV; Kerr C; All AH
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):953-64. PubMed ID: 24801738
    [TBL] [Abstract][Full Text] [Related]  

  • 116. The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord.
    Nógrádi A; Pajer K; Márton G
    Ann Anat; 2011 Jul; 193(4):362-70. PubMed ID: 21600746
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Electrophysiological improvement after co-implantation of carbon filaments and fetal tissue in the contused rat spinal cord.
    Liu LS; Khan T; Sayers ST; Dauzvardis MF; Trausch CL
    Neurosci Lett; 1995 Nov; 200(3):199-202. PubMed ID: 9064611
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion.
    Bazley FA; Hu C; Maybhate A; Pourmorteza A; Pashai N; Thakor NV; Kerr CL; All AH
    J Neurosurg Spine; 2012 Apr; 16(4):414-23. PubMed ID: 22303873
    [TBL] [Abstract][Full Text] [Related]  

  • 119.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.