These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9065488)

  • 1. Monoamine oxidase inhibition causes a long-term prolongation of the dopamine-induced responses in rat midbrain dopaminergic cells.
    Mercuri NB; Scarponi M; Bonci A; Siniscalchi A; Bernardi G
    J Neurosci; 1997 Apr; 17(7):2267-72. PubMed ID: 9065488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo.
    Lamensdorf I; Youdim MB; Finberg JP
    J Neurochem; 1996 Oct; 67(4):1532-9. PubMed ID: 8858937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum.
    Butcher SP; Fairbrother IS; Kelly JS; Arbuthnott GW
    J Neurochem; 1990 Sep; 55(3):981-8. PubMed ID: 2117053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological effects of monoamine oxidase inhibition on rat midbrain dopaminergic neurones: an in vitro study.
    Mercuri NB; Bonci A; Siniscalchi A; Stefani A; Calabresi P; Bernardi G
    Br J Pharmacol; 1996 Feb; 117(3):528-532. PubMed ID: 8821544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective monoamine oxidase subtype inhibition and striatal extracellular dopamine in the guinea-pig.
    Ilani T; Lamensdorf I; Finberg JP
    Br J Pharmacol; 2000 Aug; 130(8):1992-8. PubMed ID: 10952692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological evidence for a reciprocal interaction between amphetamine and cocaine-related drugs on rat midbrain dopaminergic neurons.
    Scarponi M; Bernardi G; Mercuri NB
    Eur J Neurosci; 1999 Feb; 11(2):593-8. PubMed ID: 10051759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tranylcypromine, but not moclobemide, prolongs the inhibitory action of dopamine on midbrain dopaminergic neurons: an in vitro electrophysiological study.
    Mercuri NB; Federici M; Marinelli S; Bernardi G
    Synapse; 2000 Sep; 37(3):216-21. PubMed ID: 10881043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SR 95191, a selective inhibitor of type A monoamine oxidase with dopaminergic properties. II. Biochemical characterization of monoamine oxidase inhibition.
    Kan JP; Steinberg R; Mouget-Goniot C; Worms P; Bizière K
    J Pharmacol Exp Ther; 1987 Jan; 240(1):251-8. PubMed ID: 3100771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of dopamine synthesis in rat striatum subsequent to selective type A monoamine oxidase inhibition.
    Schoepp DD; Azzaro AJ
    J Neurochem; 1981 Aug; 37(2):527-30. PubMed ID: 6790675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term administration of monoamine oxidase inhibitors alters the firing rate and pattern of dopamine neurons in the ventral tegmental area.
    Chenu F; El Mansari M; Blier P
    Int J Neuropsychopharmacol; 2009 May; 12(4):475-85. PubMed ID: 18700056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway.
    Aluf Y; Vaya J; Khatib S; Loboda Y; Finberg JP
    Neuropharmacology; 2013 Feb; 65():48-57. PubMed ID: 22982254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors.
    Bello EP; Mateo Y; Gelman DM; Noaín D; Shin JH; Low MJ; Alvarez VA; Lovinger DM; Rubinstein M
    Nat Neurosci; 2011 Jul; 14(8):1033-8. PubMed ID: 21743470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice.
    L'hirondel M; Chéramy A; Godeheu G; Artaud F; Saiardi A; Borrelli E; Glowinski J
    Brain Res; 1998 May; 792(2):253-62. PubMed ID: 9593923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clorgyline-induced switch from locomotion to mouthing in sensitization to the dopamine D2/D3 agonist quinpirole in rats: role of sigma and imidazoline I2 receptors.
    Culver KE; Szechtman H
    Psychopharmacology (Berl); 2003 May; 167(2):211-8. PubMed ID: 12652347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different roles for type A and type B monoamine oxidase in regulating synaptic dopamine at D-1 and D-2 receptors associated with adenosine-3',5'-cyclic monophosphate (cyclic AMP) formation.
    Liccione J; Azzaro AJ
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Feb; 337(2):151-8. PubMed ID: 2835690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased L-DOPA-derived dopamine following selective MAO-A or -B inhibition in rat striatum depleted of dopaminergic and serotonergic innervation.
    Sader-Mazbar O; Loboda Y; Rabey MJ; Finberg JP
    Br J Pharmacol; 2013 Nov; 170(5):999-1013. PubMed ID: 23992249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiologic changes in ventral midbrain dopaminergic neurons resulting from (+/-) -3,4-methylenedioxymethamphetamine (MDMA-"Ecstasy").
    Federici M; Sebastianelli L; Natoli S; Bernardi G; Mercuri NB
    Biol Psychiatry; 2007 Sep; 62(6):680-6. PubMed ID: 17511969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of monoamine oxidase inhibitors and dopamine agonists on the behavior of mammal- and frog-eating snakes.
    Temple JG; Barthalmus GT
    Physiol Behav; 1994 May; 55(5):927-33. PubMed ID: 7912837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors.
    Tamae A; Nakatsuka T; Koga K; Kato G; Furue H; Katafuchi T; Yoshimura M
    J Physiol; 2005 Oct; 568(Pt 1):243-53. PubMed ID: 15975975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-deprenyl (selegiline) limits the repetitive firing of action potentials in rat hippocampal CA1 neurons via a dopaminergic mechanism.
    Huang CC; Tsai JJ; Hsu KS
    Brain Res; 1997 Apr; 753(1):27-35. PubMed ID: 9125428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.