These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 9065790)
1. Demonstration of a peptide:N-glycosidase in the endoplasmic reticulum of rat liver. Weng S; Spiro RG Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):655-61. PubMed ID: 9065790 [TBL] [Abstract][Full Text] [Related]
2. Effect of proteasome inhibitors on the release into the cytosol of free polymannose oligosaccharides from glycoproteins. Karaivanova VK; Spiro RG Glycobiology; 2000 Jul; 10(7):727-35. PubMed ID: 10910976 [TBL] [Abstract][Full Text] [Related]
3. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. Moore SE; Spiro RG J Biol Chem; 1994 Apr; 269(17):12715-21. PubMed ID: 8175683 [TBL] [Abstract][Full Text] [Related]
4. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Spiro RG Cell Mol Life Sci; 2004 May; 61(9):1025-41. PubMed ID: 15112051 [TBL] [Abstract][Full Text] [Related]
5. Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutant. I. Role of glucose in the initial glycosylation of invertase in the endoplasmic reticulum. Verostek MF; Atkinson PH; Trimble RB J Biol Chem; 1993 Jun; 268(16):12095-103. PubMed ID: 8505333 [TBL] [Abstract][Full Text] [Related]
6. Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices. Anumula KR; Spiro RG J Biol Chem; 1983 Dec; 258(24):15274-82. PubMed ID: 6418744 [TBL] [Abstract][Full Text] [Related]
7. Glycopeptide export from mammalian microsomes is independent of calcium and is distinct from oligosaccharide export. Ali BR; Field MC Glycobiology; 2000 Apr; 10(4):383-91. PubMed ID: 10764826 [TBL] [Abstract][Full Text] [Related]
8. Transport of free polymannose-type oligosaccharides from the endoplasmic reticulum into the cytosol is inhibited by mannosides and requires a thapsigargin-sensitive calcium store. Moore SE Glycobiology; 1998 Apr; 8(4):373-81. PubMed ID: 9499385 [TBL] [Abstract][Full Text] [Related]
9. Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum. Chandra NC; Spiro MJ; Spiro RG J Biol Chem; 1998 Jul; 273(31):19715-21. PubMed ID: 9677401 [TBL] [Abstract][Full Text] [Related]
10. Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation. Spiro MJ; Spiro RG Glycobiology; 2001 Oct; 11(10):803-11. PubMed ID: 11588156 [TBL] [Abstract][Full Text] [Related]
11. Facile cleavage of complex oligosaccharides from glycopeptides by almond emulsin peptide: N-glycosidase. Plummer TH; Tarentino AL J Biol Chem; 1981 Oct; 256(20):10243-6. PubMed ID: 7287707 [TBL] [Abstract][Full Text] [Related]
12. Carbohydrate-binding property of peptide: N-glycanase from mouse fibroblast L-929 cells as evaluated by inhibition and binding experiments using various oligosaccharides. Suzuki T; Kitajima K; Inoue Y; Inoue S J Biol Chem; 1995 Jun; 270(25):15181-6. PubMed ID: 7797502 [TBL] [Abstract][Full Text] [Related]
13. Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity. Suzuki T; Park H; Kitajima K; Lennarz WJ J Biol Chem; 1998 Aug; 273(34):21526-30. PubMed ID: 9705282 [TBL] [Abstract][Full Text] [Related]
14. Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase. Grard T; Herman V; Saint-Pol A; Kmiecik D; Labiau O; Mir AM; Alonso C; Verbert A; Cacan R; Michalski JC Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):787-92. PubMed ID: 8670153 [TBL] [Abstract][Full Text] [Related]
15. Detailed studies on substrate structure requirements of glycoamidases A and F. Fan JQ; Lee YC J Biol Chem; 1997 Oct; 272(43):27058-64. PubMed ID: 9341145 [TBL] [Abstract][Full Text] [Related]
16. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Tarentino AL; Gómez CM; Plummer TH Biochemistry; 1985 Aug; 24(17):4665-71. PubMed ID: 4063349 [TBL] [Abstract][Full Text] [Related]
17. Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations. Plummer TH; Elder JH; Alexander S; Phelan AW; Tarentino AL J Biol Chem; 1984 Sep; 259(17):10700-4. PubMed ID: 6206060 [TBL] [Abstract][Full Text] [Related]
18. Kinetic comparison of peptide: N-glycosidases F and A reveals several differences in substrate specificity. Altmann F; Schweiszer S; Weber C Glycoconj J; 1995 Feb; 12(1):84-93. PubMed ID: 7540902 [TBL] [Abstract][Full Text] [Related]
19. A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in rat liver. Kuranda MJ; Aronson NN J Biol Chem; 1986 May; 261(13):5803-9. PubMed ID: 3084472 [TBL] [Abstract][Full Text] [Related]
20. Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish). The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living organisms. Seko A; Kitajima K; Inoue Y; Inoue S J Biol Chem; 1991 Nov; 266(33):22110-4. PubMed ID: 1718990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]