BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9065790)

  • 1. Demonstration of a peptide:N-glycosidase in the endoplasmic reticulum of rat liver.
    Weng S; Spiro RG
    Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):655-61. PubMed ID: 9065790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of proteasome inhibitors on the release into the cytosol of free polymannose oligosaccharides from glycoproteins.
    Karaivanova VK; Spiro RG
    Glycobiology; 2000 Jul; 10(7):727-35. PubMed ID: 10910976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis.
    Moore SE; Spiro RG
    J Biol Chem; 1994 Apr; 269(17):12715-21. PubMed ID: 8175683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation.
    Spiro RG
    Cell Mol Life Sci; 2004 May; 61(9):1025-41. PubMed ID: 15112051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutant. I. Role of glucose in the initial glycosylation of invertase in the endoplasmic reticulum.
    Verostek MF; Atkinson PH; Trimble RB
    J Biol Chem; 1993 Jun; 268(16):12095-103. PubMed ID: 8505333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices.
    Anumula KR; Spiro RG
    J Biol Chem; 1983 Dec; 258(24):15274-82. PubMed ID: 6418744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycopeptide export from mammalian microsomes is independent of calcium and is distinct from oligosaccharide export.
    Ali BR; Field MC
    Glycobiology; 2000 Apr; 10(4):383-91. PubMed ID: 10764826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of free polymannose-type oligosaccharides from the endoplasmic reticulum into the cytosol is inhibited by mannosides and requires a thapsigargin-sensitive calcium store.
    Moore SE
    Glycobiology; 1998 Apr; 8(4):373-81. PubMed ID: 9499385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum.
    Chandra NC; Spiro MJ; Spiro RG
    J Biol Chem; 1998 Jul; 273(31):19715-21. PubMed ID: 9677401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation.
    Spiro MJ; Spiro RG
    Glycobiology; 2001 Oct; 11(10):803-11. PubMed ID: 11588156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile cleavage of complex oligosaccharides from glycopeptides by almond emulsin peptide: N-glycosidase.
    Plummer TH; Tarentino AL
    J Biol Chem; 1981 Oct; 256(20):10243-6. PubMed ID: 7287707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate-binding property of peptide: N-glycanase from mouse fibroblast L-929 cells as evaluated by inhibition and binding experiments using various oligosaccharides.
    Suzuki T; Kitajima K; Inoue Y; Inoue S
    J Biol Chem; 1995 Jun; 270(25):15181-6. PubMed ID: 7797502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides glycosylated in the endoplasmic reticulum of yeast are subsequently deglycosylated by a soluble peptide: N-glycanase activity.
    Suzuki T; Park H; Kitajima K; Lennarz WJ
    J Biol Chem; 1998 Aug; 273(34):21526-30. PubMed ID: 9705282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase.
    Grard T; Herman V; Saint-Pol A; Kmiecik D; Labiau O; Mir AM; Alonso C; Verbert A; Cacan R; Michalski JC
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):787-92. PubMed ID: 8670153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed studies on substrate structure requirements of glycoamidases A and F.
    Fan JQ; Lee YC
    J Biol Chem; 1997 Oct; 272(43):27058-64. PubMed ID: 9341145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F.
    Tarentino AL; Gómez CM; Plummer TH
    Biochemistry; 1985 Aug; 24(17):4665-71. PubMed ID: 4063349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations.
    Plummer TH; Elder JH; Alexander S; Phelan AW; Tarentino AL
    J Biol Chem; 1984 Sep; 259(17):10700-4. PubMed ID: 6206060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic comparison of peptide: N-glycosidases F and A reveals several differences in substrate specificity.
    Altmann F; Schweiszer S; Weber C
    Glycoconj J; 1995 Feb; 12(1):84-93. PubMed ID: 7540902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in rat liver.
    Kuranda MJ; Aronson NN
    J Biol Chem; 1986 May; 261(13):5803-9. PubMed ID: 3084472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide:N-glycosidase activity found in the early embryos of Oryzias latipes (Medaka fish). The first demonstration of the occurrence of peptide:N-glycosidase in animal cells and its implication for the presence of a de-N-glycosylation system in living organisms.
    Seko A; Kitajima K; Inoue Y; Inoue S
    J Biol Chem; 1991 Nov; 266(33):22110-4. PubMed ID: 1718990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.