These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9065847)

  • 1. Transmitter release differs at snake twitch and tonic endplates during potassium-induced nerve terminal depolarization.
    Connor EA; Dunaevsky A; Griffiths DJ; Hardwick JC; Parsons RL
    J Neurophysiol; 1997 Feb; 77(2):749-60. PubMed ID: 9065847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantal transmitter release at snake twitch and tonic muscle fibres during prolonged nerve terminal depolarization.
    Coniglio LM; Hardwick JC; Parsons RL
    J Physiol; 1993 Jul; 466():383-403. PubMed ID: 8410698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lanthanum at snake twitch and tonic muscle fibre endplates.
    Coniglio LM; Hendricks GM; Parsons RL
    J Physiol; 1993 Jul; 466():405-19. PubMed ID: 8410700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals.
    Calupca MA; Hendricks GM; Hardwick JC; Parsons RL
    J Neurophysiol; 1999 Feb; 81(2):498-506. PubMed ID: 10036254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of single quantal efficacy at the snake neuromuscular junction.
    Wilkinson RS; Lunin SD; Stevermer JJ
    J Physiol; 1992 Mar; 448():413-36. PubMed ID: 1350638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic function is altered in snake K+-depolarized motor nerve terminals containing compromised mitochondria.
    Calupca MA; Prior C; Merriam LA; Hendricks GM; Parsons RL
    J Physiol; 2001 Apr; 532(Pt 1):217-27. PubMed ID: 11283236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release properties of isolated neuromuscular boutons of the garter snake.
    Wilkinson RS; Son YJ; Lunin SD
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):503-14. PubMed ID: 8887760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of edrophonium, physostigmine and methanesulfonyl fluoride with the snake end-plate acetylcholine receptor-channel complex.
    Fiekers JF
    J Pharmacol Exp Ther; 1985 Sep; 234(3):539-49. PubMed ID: 2411911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmitter release at mouse motor nerve terminals mediated by temporary accumulation of intracellular barium.
    Quastel DM; Saint DA
    J Physiol; 1988 Dec; 406():55-73. PubMed ID: 2908184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High percentage of skew-distributed miniature endplate currents in old mice.
    Vautrin J; Kriebel ME
    Can J Physiol Pharmacol; 1993 Feb; 71(2):165-74. PubMed ID: 8391374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals.
    Curtis MJ; Quastel DM; Saint DA
    J Physiol; 1986 Apr; 373():243-60. PubMed ID: 2875177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular junction.
    Thesleff S; Molgó J; Lundh H
    Brain Res; 1983 Mar; 264(1):89-97. PubMed ID: 6133583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Ca2+ inflow to quantal, phasic transmitter release from nerve terminals of frog muscle.
    Dudel J
    Pflugers Arch; 1992 Nov; 422(2):129-42. PubMed ID: 1362607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantal transmitter release mediated by strontium at the mouse motor nerve terminal.
    Bain AI; Quastel DM
    J Physiol; 1992 May; 450():63-87. PubMed ID: 1359125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of quantal releases during end-plate currents at the frog neuromuscular junction.
    Van der Kloot W
    J Physiol; 1988 Aug; 402():605-26. PubMed ID: 2853224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of the antibiotic, primycin, on spontaneous transmitter release at the neuromuscular junction.
    Henderson F; Marshall IG
    Br J Pharmacol; 1984 Jan; 81(1):61-7. PubMed ID: 6142739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.
    Quigley PA; Msghina M; Govind CK; Atwood HL
    J Neurophysiol; 1999 Jan; 81(1):356-70. PubMed ID: 9914295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depolarization reverses age-related decrease of spontaneous transmitter release.
    Alshuaib WB; Fahim MA
    J Appl Physiol (1985); 1991 May; 70(5):2066-71. PubMed ID: 1677936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission. II. Postsynaptic considerations.
    Fiekers JF
    J Pharmacol Exp Ther; 1983 Jun; 225(3):496-502. PubMed ID: 6306208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.