These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9065906)
1. Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure. Sijbers J; Scheunders P; Bonnet N; Van Dyck D; Raman E Magn Reson Imaging; 1996; 14(10):1157-63. PubMed ID: 9065906 [TBL] [Abstract][Full Text] [Related]
2. Single image signal-to-noise ratio estimation for magnetic resonance images. Sim KS; Lai MA; Tso CP; Teo CC J Med Syst; 2011 Feb; 35(1):39-48. PubMed ID: 20703587 [TBL] [Abstract][Full Text] [Related]
3. Effect of echo spacing and readout bandwidth on basic performances of EPI-fMRI acquisition sequences implemented on two 1.5 T MR scanner systems. Giannelli M; Diciotti S; Tessa C; Mascalchi M Med Phys; 2010 Jan; 37(1):303-10. PubMed ID: 20175493 [TBL] [Abstract][Full Text] [Related]
4. A new single acquisition, two-image difference method for determining MR image SNR. Steckner MC; Liu B; Ying L Med Phys; 2009 Feb; 36(2):662-71. PubMed ID: 19292008 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of gamma-variate fits to concentration-time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Benner T; Heiland S; Erb G; Forsting M; Sartor K Magn Reson Imaging; 1997; 15(3):307-17. PubMed ID: 9201678 [TBL] [Abstract][Full Text] [Related]
6. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images. Yu S; Dai G; Wang Z; Li L; Wei X; Xie Y BMC Med Imaging; 2018 May; 18(1):17. PubMed ID: 29769079 [TBL] [Abstract][Full Text] [Related]
7. An unbiased signal-to-noise ratio measure for magnetic resonance images. McGibney G; Smith MR Med Phys; 1993; 20(4):1077-8. PubMed ID: 8413015 [TBL] [Abstract][Full Text] [Related]
8. Adaptive filtering for high resolution magnetic resonance images. Ying K; Clymer BD; Schmalbrock P J Magn Reson Imaging; 1996; 6(2):367-77. PubMed ID: 9132104 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee. Fritz J; Fritz B; Zhang J; Thawait GK; Joshi DH; Pan L; Wang D Invest Radiol; 2017 Sep; 52(9):529-537. PubMed ID: 28430716 [TBL] [Abstract][Full Text] [Related]
10. Dual-energy, standard and low-kVp contrast-enhanced CT-cholangiography: a comparative analysis of image quality and radiation exposure. Stiller W; Schwarzwaelder CB; Sommer CM; Veloza S; Radeleff BA; Kauczor HU Eur J Radiol; 2012 Jul; 81(7):1405-12. PubMed ID: 21458939 [TBL] [Abstract][Full Text] [Related]
11. Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising. Jang U; Nam Y; Kim DH; Hwang D Neuroimage; 2013 Apr; 70():308-16. PubMed ID: 23296184 [TBL] [Abstract][Full Text] [Related]
12. Adaptive template filtering for signal-to-noise ratio enhancement in magnetic resonance imaging. Ahn CB; Song YC; Park DJ IEEE Trans Med Imaging; 1999 Jun; 18(6):549-59. PubMed ID: 10463132 [TBL] [Abstract][Full Text] [Related]
13. Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis. Placidi G; Alecci M; Sotgiu A Phys Med Biol; 2003 Jul; 48(13):1987-95. PubMed ID: 12884930 [TBL] [Abstract][Full Text] [Related]
14. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography. Thitaikumar A; Krouskop TA; Ophir J Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125 [TBL] [Abstract][Full Text] [Related]
15. Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR. Wood JC; Johnson KM Magn Reson Med; 1999 Mar; 41(3):631-5. PubMed ID: 10204890 [TBL] [Abstract][Full Text] [Related]
16. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Triantafyllou C; Hoge RD; Krueger G; Wiggins CJ; Potthast A; Wiggins GC; Wald LL Neuroimage; 2005 May; 26(1):243-50. PubMed ID: 15862224 [TBL] [Abstract][Full Text] [Related]
17. Multiple breath-hold averaging (MBA) method for increased SNR in abdominal MRI. Feinberg DA; Rofsky NM; Johnson G Magn Reson Med; 1995 Dec; 34(6):905-9. PubMed ID: 8598819 [TBL] [Abstract][Full Text] [Related]
18. [MR imaging of lymph nodes using Gadofluorine M: feasibility in a swine model at 1.5 and 3T]. Spuentrup E; Ruhl K; Weigl S; Misselwitz B; Wardeh D; Buhl A; Botnar RM; Katoh M; Wiethoff AJ; Günther RW Rofo; 2010 Aug; 182(8):698-705. PubMed ID: 20419610 [TBL] [Abstract][Full Text] [Related]
19. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. Dietrich O; Raya JG; Reeder SB; Reiser MF; Schoenberg SO J Magn Reson Imaging; 2007 Aug; 26(2):375-85. PubMed ID: 17622966 [TBL] [Abstract][Full Text] [Related]
20. Qualitative and quantitative analysis of routinely postprocessed (CLEAR) CE-MRA data sets: are SNR and CNR calculations reliable? Buerke B; Allkemper T; Kugel H; Bremer C; Evers S; Kooijman H; Heindel W; Tombach B Acad Radiol; 2008 Sep; 15(9):1111-7. PubMed ID: 18692751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]