These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9066115)

  • 1. Establishing a model to study the regulation of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Alpert CA; Pérez-Martínez G
    FEMS Microbiol Lett; 1997 Mar; 148(1):83-9. PubMed ID: 9066115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.
    Tsai YK; Chen HW; Lo TC; Lin TH
    Microbiology (Reading); 2009 Mar; 155(Pt 3):751-760. PubMed ID: 19246746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.
    Monedero V; Gosalbes MJ; Pérez-Martínez G
    J Bacteriol; 1997 Nov; 179(21):6657-64. PubMed ID: 9352913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
    Yebra MJ; Veyrat A; Santos MA; Pérez-Martínez G
    J Bacteriol; 2000 Jan; 182(1):155-63. PubMed ID: 10613875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion.
    Viana R; Monedero V; Dossonnet V; Vadeboncoeur C; Pérez-Martínez G; Deutscher J
    Mol Microbiol; 2000 May; 36(3):570-84. PubMed ID: 10844647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei.
    Alpert CA; Chassy BM
    Gene; 1988; 62(2):277-88. PubMed ID: 3130296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.
    Takala TM; Saris PE; Tynkkynen SS
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):564-70. PubMed ID: 12536257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.
    Alpert CA; Siebers U
    J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of expression of the Lactococcus lactis lactose operon.
    Griffin HG; Gasson MJ
    Lett Appl Microbiol; 1993 Aug; 17(2):92-6. PubMed ID: 7763936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system.
    Mazé A; Boël G; Poncet S; Mijakovic I; Le Breton Y; Benachour A; Monedero V; Deutscher J; Hartke A
    J Bacteriol; 2004 Jul; 186(14):4543-55. PubMed ID: 15231787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei.
    Chassy BM; Alpert CA
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):157-65. PubMed ID: 2517398
    [No Abstract]   [Full Text] [Related]  

  • 13. Expression of Lactobacillus casei ATCC 393 beta-galactosidase encoded by plasmid pLZ15 in Lactococcus lactis CNRZ 1123.
    Hemme D; Gaier W; Winters DA; Foucaud C; Vogel RF
    Lett Appl Microbiol; 1994 Nov; 19(5):345-8. PubMed ID: 7765447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis.
    de Vos WM; Boerrigter I; van Rooyen RJ; Reiche B; Hengstenberg W
    J Biol Chem; 1990 Dec; 265(36):22554-60. PubMed ID: 2125052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA.
    Viana R; Pérez-Martínez G; Deutscher J; Monedero V
    Arch Microbiol; 2005 Sep; 183(6):385-93. PubMed ID: 16075200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo effect of mutations in the antiterminator LacT in Lactobacillus casei.
    Gosalbes MAJ; Esteban CD; Pérez-Martı Nez G
    Microbiology (Reading); 2002 Mar; 148(Pt 3):695-702. PubMed ID: 11882703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine.
    Bidart GN; Rodríguez-Díaz J; Pérez-Martínez G; Yebra MJ
    Sci Rep; 2018 May; 8(1):7152. PubMed ID: 29740087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural features of the lac promoter affecting gusA expression in Lactobacillus casei.
    Pérez-Arellano I; Pérez-Martínez G
    Curr Microbiol; 2002 Sep; 45(3):191-6. PubMed ID: 12177741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei.
    Gosalbes MJ; Esteban CD; Galán JL; Pérez-Martínez G
    Appl Environ Microbiol; 2000 Nov; 66(11):4822-8. PubMed ID: 11055930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.