These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9066521)

  • 1. Muscle activation at the human knee during isometric flexion-extension and varus-valgus loads.
    Buchanan TS; Lloyd DG
    J Orthop Res; 1997 Jan; 15(1):11-7. PubMed ID: 9066521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling.
    Gregersen CS; Hull ML; Hakansson NA
    J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of knee angle and individual flexibility on the flexion-relaxation response of the low back musculature.
    Shin G; Shu Y; Li Z; Jiang Z; Mirka G
    J Electromyogr Kinesiol; 2004 Aug; 14(4):485-94. PubMed ID: 15165598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On hip and lumbar biomechanics. A study of joint load and muscular activity.
    Németh G
    Scand J Rehabil Med Suppl; 1984; 10():1-35. PubMed ID: 6390670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies of muscular support of varus and valgus isometric loads at the human knee.
    Lloyd DG; Buchanan TS
    J Biomech; 2001 Oct; 34(10):1257-67. PubMed ID: 11522305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb.
    Nozaki D; Nakazawa K; Akai M
    J Neurophysiol; 2005 May; 93(5):2614-24. PubMed ID: 15647398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are hamstrings activated to counteract shear forces during isometric knee extension efforts in healthy subjects?
    Kingma I; Aalbersberg S; van Dieën JH
    J Electromyogr Kinesiol; 2004 Jun; 14(3):307-15. PubMed ID: 15094144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of factors influencing muscle activity about the knee joint.
    Andriacchi TP; Andersson GB; Ortengren R; Mikosz RP
    J Orthop Res; 1984; 1(3):266-75. PubMed ID: 6481510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint stabilisers or moment actuators: the role of knee joint muscles while weight-bearing.
    Flaxman TE; Speirs AD; Benoit DL
    J Biomech; 2012 Oct; 45(15):2570-6. PubMed ID: 22947435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscular resistance to varus and valgus loads at the elbow.
    Buchanan TS; Delp SL; Solbeck JA
    J Biomech Eng; 1998 Oct; 120(5):634-9. PubMed ID: 10412442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between measured and resultant joint moments during isometric contractions at the ankle joint.
    Arampatzis A; Morey-Klapsing G; Karamanidis K; DeMonte G; Stafilidis S; Brüggemann GP
    J Biomech; 2005 Apr; 38(4):885-92. PubMed ID: 15713310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation of tendons in vivo with active and passive knee muscles.
    Aalbersberg S; Kingma I; Ronsky JL; Frayne R; van Dieën JH
    J Biomech; 2005 Sep; 38(9):1780-8. PubMed ID: 16023464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic behaviour of the gastrocnemius muscle during knee extension and flexion performed on the leg press.
    Tassi N; Guazzelli Filho J; Gonçalves M; Vitti M; Krool LB
    Electromyogr Clin Neurophysiol; 1999 Sep; 39(6):367-77. PubMed ID: 10499208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.
    Flaxman TE; Alkjær T; Simonsen EB; Krogsgaard MR; Benoit DL
    Med Sci Sports Exerc; 2017 Mar; 49(3):527-537. PubMed ID: 27755353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.
    Lavender S; Trafimow J; Andersson GB; Mayer RS; Chen IH
    Spine (Phila Pa 1976); 1994 Apr; 19(7):771-8. PubMed ID: 8202794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of knee movements on leg extension machine: an electromyography study of the rectus femoris muscle.
    Moraes AC; Bankoff AD; Okano AH; Simões EC; Rodrigues CE
    Electromyogr Clin Neurophysiol; 2004; 44(1):15-21. PubMed ID: 15008020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary and coupled motions of the native knee in response to applied varus and valgus load.
    Gladnick BP; Boorman-Padgett J; Stone K; Kent RN; Cross MB; Mayman DJ; Pearle AD; Imhauser CW
    Knee; 2016 Jun; 23(3):387-92. PubMed ID: 26875048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of load sharing between muscles and soft tissues at the human knee during static tasks.
    Lloyd DG; Buchanan TS
    J Biomech Eng; 1996 Aug; 118(3):367-76. PubMed ID: 8872259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric varus and valgus stability of the anatomic cadaver knee and the load sharing between collateral ligaments and bearing surfaces.
    Wang X; Malik A; Bartel DL; Wickiewicz TL; Wright T
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24828416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.