These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9066533)

  • 1. Systematic and random errors in compression testing of trabecular bone.
    Keaveny TM; Pinilla TP; Crawford RP; Kopperdahl DL; Lou A
    J Orthop Res; 1997 Jan; 15(1):101-10. PubMed ID: 9066533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of side-artifacts on the elastic modulus of trabecular bone.
    Un K; Bevill G; Keaveny TM
    J Biomech; 2006; 39(11):1955-63. PubMed ID: 16824533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric.
    Chang WC; Christensen TM; Pinilla TP; Keaveny TM
    J Orthop Res; 1999 Jul; 17(4):582-5. PubMed ID: 10459766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone.
    Kopperdahl DL; Morgan EF; Keaveny TM
    J Orthop Res; 2002 Jul; 20(4):801-5. PubMed ID: 12168670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.
    Bouzakis KD; Mitsi S; Michailidis N; Mirisidis I; Mesomeris G; Maliaris G; Korlos A; Kapetanos G; Antonarakos P; Anagnostidis K
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):152-8. PubMed ID: 15615116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical behavior of human trabecular bone after overloading.
    Keaveny TM; Wachtel EF; Kopperdahl DL
    J Orthop Res; 1999 May; 17(3):346-53. PubMed ID: 10376722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trabecular bone modulus-density relationships depend on anatomic site.
    Morgan EF; Bayraktar HH; Keaveny TM
    J Biomech; 2003 Jul; 36(7):897-904. PubMed ID: 12757797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of trabecular damage on mechanical strain.
    Wachtel EF; Keaveny TM
    J Orthop Res; 1997 Sep; 15(5):781-7. PubMed ID: 9420610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of the experimental artifact in trabecular bone compressive modulus.
    Keaveny TM; Borchers RE; Gibson LJ; Hayes WC
    J Biomech; 1993; 26(4-5):599-607. PubMed ID: 8478361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site.
    Bevill G; Easley SK; Keaveny TM
    J Biomech; 2007; 40(15):3381-8. PubMed ID: 17659290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.
    Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM
    Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of yield strain of human trabecular bone on anatomic site.
    Morgan EF; Keaveny TM
    J Biomech; 2001 May; 34(5):569-77. PubMed ID: 11311697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations.
    Verhulp E; van Rietbergen B; Müller R; Huiskes R
    J Biomech; 2008; 41(7):1479-85. PubMed ID: 18423473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.