These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 9066796)

  • 1. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony.
    Tourasse NJ; Gouy M
    Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating the probability of multitaxon evolutionary trees: bootstrappers Gambit.
    Lake JA
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9662-6. PubMed ID: 7568193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock.
    Van de Peer Y; Neefs JM; De Rijk P; De Wachter R
    J Mol Evol; 1993 Aug; 37(2):221-32. PubMed ID: 8411212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical models for substitution in ribosomal RNA.
    Smith AD; Lui TW; Tillier ER
    Mol Biol Evol; 2004 Mar; 21(3):419-27. PubMed ID: 14660689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
    Tateno Y; Takezaki N; Nei M
    Mol Biol Evol; 1994 Mar; 11(2):261-77. PubMed ID: 8170367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances.
    Van de Peer Y; Baldauf SL; Doolittle WF; Meyer A
    J Mol Evol; 2000 Dec; 51(6):565-76. PubMed ID: 11116330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When is it safe to use an oversimplified substitution model in tree-making?
    Rzhetsky A; Sitnikova T
    Mol Biol Evol; 1996 Nov; 13(9):1255-65. PubMed ID: 8896378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree.
    Sourdis J; Nei M
    Mol Biol Evol; 1988 May; 5(3):298-311. PubMed ID: 3386530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny of some ascaridoid nematodes, inferred from comparison of 18S and 28S rRNA sequences.
    Nadler SA
    Mol Biol Evol; 1992 Sep; 9(5):932-44. PubMed ID: 1528113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tests of applicability of several substitution models for DNA sequence data.
    Rzhetsky A; Nei M
    Mol Biol Evol; 1995 Jan; 12(1):131-51. PubMed ID: 7877488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic inference with weighted codon evolutionary distances.
    Criscuolo A; Michel CJ
    J Mol Evol; 2009 Apr; 68(4):377-92. PubMed ID: 19308635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scoredist: a simple and robust protein sequence distance estimator.
    Sonnhammer EL; Hollich V
    BMC Bioinformatics; 2005 Apr; 6():108. PubMed ID: 15857510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient biased estimation of evolutionary distances when substitution rates vary across sites.
    Guindon S; Gascuel O
    Mol Biol Evol; 2002 Apr; 19(4):534-43. PubMed ID: 11919295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the errors in the estimation of evolutionary distances between sequences.
    Hoyle DC; Higgs PG
    Mol Biol Evol; 2003 Jan; 20(1):1-9. PubMed ID: 12519899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes.
    Tourasse NJ; Gouy M
    Mol Phylogenet Evol; 1999 Oct; 13(1):159-68. PubMed ID: 10508549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lineage-specific base-pair contents in the stem regions of ribosomal RNAs and their influence on the estimation of evolutionary distances.
    Sugaya N; Otsuka J
    J Mol Evol; 2002 Nov; 55(5):584-94. PubMed ID: 12399932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.
    Hancock JM; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):377-91. PubMed ID: 3405077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin.
    Mallatt JM; Garey JR; Shultz JW
    Mol Phylogenet Evol; 2004 Apr; 31(1):178-91. PubMed ID: 15019618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita (Agaricales, Basidiomycota): phylogenetic implications.
    Moncalvo JM; Drehmel D; Vilgalys R
    Mol Phylogenet Evol; 2000 Jul; 16(1):48-63. PubMed ID: 10877939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony.
    Lake JA
    Mol Biol Evol; 1987 Mar; 4(2):167-91. PubMed ID: 3447007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.