BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9067456)

  • 1. Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes.
    Papadopoulos MC; Koumenis IL; Dugan LL; Giffard RG
    Brain Res; 1997 Feb; 748(1-2):151-6. PubMed ID: 9067456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing vulnerability of astrocytes to oxidative injury with age despite constant antioxidant defenses.
    Papadopoulos MC; Koumenis IL; Yuan TY; Giffard RG
    Neuroscience; 1998 Feb; 82(3):915-25. PubMed ID: 9483545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of murine astrocyte antioxidant defence by bcl-2: protection in part reflects elevated glutathione levels.
    Papadopoulos MC; Koumenis IL; Xu L; Giffard RG
    Eur J Neurosci; 1998 Apr; 10(4):1252-60. PubMed ID: 9749779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.
    Shanker G; Syversen T; Aschner JL; Aschner M
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):11-22. PubMed ID: 15950756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of bcl-xL protects astrocytes from glucose deprivation and is associated with higher glutathione, ferritin, and iron levels.
    Xu L; Koumenis IL; Tilly JL; Giffard RG
    Anesthesiology; 1999 Oct; 91(4):1036-46. PubMed ID: 10519507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes.
    Liddell JR; Dringen R; Crack PJ; Robinson SR
    Glia; 2006 Dec; 54(8):873-9. PubMed ID: 16998864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consumption of redox energy by glutathione metabolism contributes to hypoxia/ reoxygenation-induced injury in astrocytes.
    Makarov P; Kropf S; Wiswedel I; Augustin W; Schild L
    Mol Cell Biochem; 2006 Jun; 286(1-2):95-101. PubMed ID: 16583144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione release and catabolism during energy substrate restriction in astrocytes.
    Juurlink BH; Schültke E; Hertz L
    Brain Res; 1996 Feb; 710(1-2):229-33. PubMed ID: 8963663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoxin A4 Activates Nrf2 Pathway and Ameliorates Cell Damage in Cultured Cortical Astrocytes Exposed to Oxygen-Glucose Deprivation/Reperfusion Insults.
    Wu L; Li HH; Wu Q; Miao S; Liu ZJ; Wu P; Ye DY
    J Mol Neurosci; 2015 Aug; 56(4):848-857. PubMed ID: 25702137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunosuppressive immunophilin ligands attenuate damage in cultured rat astrocytes depleted of glutathione and exposed to simulated ischemia in vitro. Comparison with N-acetylcysteine.
    Gabryel B; Toborek T; Małecki A
    Neurotoxicology; 2005 Jun; 26(3):373-84. PubMed ID: 15935209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis.
    He Y; Jackman NA; Thorn TL; Vought VE; Hewett SJ
    Glia; 2015 Sep; 63(9):1568-80. PubMed ID: 25880604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSP70 protects murine astrocytes from glucose deprivation injury.
    Xu L; Giffard RG
    Neurosci Lett; 1997 Mar; 224(1):9-12. PubMed ID: 9132695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivity of murine astrocytes and neurons from different brain regions to injury.
    Xu L; Sapolsky RM; Giffard RG
    Exp Neurol; 2001 Jun; 169(2):416-24. PubMed ID: 11358455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress.
    Miralles VJ; Martínez-López I; Zaragozá R; Borrás E; García C; Pallardó FV; Viña JR
    Brain Res; 2001 Dec; 922(1):21-9. PubMed ID: 11730698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formaldehyde stimulates Mrp1-mediated glutathione deprivation of cultured astrocytes.
    Tulpule K; Dringen R
    J Neurochem; 2011 Feb; 116(4):626-35. PubMed ID: 21166805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity.
    Gegg ME; Clark JB; Heales SJ
    Brain Res; 2005 Mar; 1036(1-2):1-6. PubMed ID: 15725395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced expression of Harvey ras induced by serum deprivation in cultured astrocytes.
    Messina S; Molinaro G; Bruno V; Battaglia G; Spinsanti P; Di Pardo A; Nicoletti F; Frati L; Porcellini A
    J Neurochem; 2008 Jul; 106(2):551-9. PubMed ID: 18410509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anethole dithiolethione, a putative neuroprotectant, increases intracellular and extracellular glutathione levels during starvation of cultured astroglial cells.
    Dringen R; Hamprecht B; Drukarch B
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Dec; 358(6):616-22. PubMed ID: 9879719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estrogen suppresses the impact of glucose deprivation on astrocytic calcium levels and signaling independently of the nuclear estrogen receptor.
    Arnold S
    Neurobiol Dis; 2005 Oct; 20(1):82-92. PubMed ID: 16137569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions.
    Lee JE; Yenari MA; Sun GH; Xu L; Emond MR; Cheng D; Steinberg GK; Giffard RG
    Exp Neurol; 2001 Jul; 170(1):129-39. PubMed ID: 11421590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.