These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 9067803)
1. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine. García JJ; Gómez-Puyou A; de Gómez-Puyou MT J Bioenerg Biomembr; 1997 Feb; 29(1):61-70. PubMed ID: 9067803 [TBL] [Abstract][Full Text] [Related]
2. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375 [TBL] [Abstract][Full Text] [Related]
3. Structural alterations and inhibition of unisite and multisite ATP hydrolysis in soluble mitochondrial F1 by guanidinium chloride. Tuena de Gómez-Puyou M; Domínguez-Ramírez L; Reyes-Vivas H; Gómez-Puyou A Biochemistry; 2001 Mar; 40(11):3396-402. PubMed ID: 11258961 [TBL] [Abstract][Full Text] [Related]
4. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. García JJ; Capaldi RA J Biol Chem; 1998 Jun; 273(26):15940-5. PubMed ID: 9632641 [TBL] [Abstract][Full Text] [Related]
5. Catalytic sites of Escherichia coli F1-ATPase. Characterization of unisite catalysis at varied pH. al-Shawi MK; Senior AE Biochemistry; 1992 Jan; 31(3):878-85. PubMed ID: 1531027 [TBL] [Abstract][Full Text] [Related]
6. The native mitochondrial F1-inhibitor protein complex carries out uni- and multisite ATP hydrolysis. Vázquez-Laslop N; Dreyfus G J Biol Chem; 1990 Nov; 265(31):19002-6. PubMed ID: 2146268 [TBL] [Abstract][Full Text] [Related]
7. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and release of ATP by soluble mitochondrial F1 in complex with its inhibitor protein during dimethylsulfoxide-water transitions. Tuena de Gómez-Puyou M; Sandoval F; García JJ; Gómez-Puyou A Eur J Biochem; 1998 Jul; 255(1):303-8. PubMed ID: 9692932 [TBL] [Abstract][Full Text] [Related]
9. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. al-Shawi MK; Parsonage D; Senior AE J Biol Chem; 1990 Mar; 265(8):4402-10. PubMed ID: 2137823 [TBL] [Abstract][Full Text] [Related]
12. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407 [TBL] [Abstract][Full Text] [Related]
13. ATP synthase. Conditions under which all catalytic sites of the F1 moiety are kinetically equivalent in hydrolyzing ATP. Reynafarje BD; Pedersen PL J Biol Chem; 1996 Dec; 271(51):32546-50. PubMed ID: 8955079 [TBL] [Abstract][Full Text] [Related]
14. Evidence for functional heterogeneity among the catalytic sites of the bovine heart mitochondrial F1-ATPase. Bullough DA; Verburg JG; Yoshida M; Allison WS J Biol Chem; 1987 Aug; 262(24):11675-83. PubMed ID: 2887560 [TBL] [Abstract][Full Text] [Related]
15. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. Mueller DM; Indyk V; McGill L Eur J Biochem; 1994 Jun; 222(3):991-9. PubMed ID: 8026510 [TBL] [Abstract][Full Text] [Related]
16. Single site catalysis of the F1-ATPase from Saccharomyces cerevisiae and the effect of inorganic phosphate on it. Konishi J; Yohda M; Hashimoto T; Yoshida M J Biochem; 1987 Aug; 102(2):273-9. PubMed ID: 2889726 [TBL] [Abstract][Full Text] [Related]
17. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis. Possmayer FE; Hartog AF; Berden JA; Gräber P Biochim Biophys Acta; 2000 Jul; 1459(1):202-17. PubMed ID: 10924912 [TBL] [Abstract][Full Text] [Related]
18. Unisite catalysis and the delta subunit of F1-ATPase in Escherichia coli. Xiao R; Penefsky HS J Biol Chem; 1994 Jul; 269(30):19232-7. PubMed ID: 8034684 [TBL] [Abstract][Full Text] [Related]
19. Steady-state rate of F1-ATPase turnover during ATP hydrolysis by the single catalytic site. Milgrom YaM ; Murataliev MB FEBS Lett; 1987 Feb; 212(1):63-7. PubMed ID: 2879744 [TBL] [Abstract][Full Text] [Related]
20. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]