These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 906847)

  • 1. Cochlear potentials of the pigeon inner ear recorded with microelectrodes.
    Jorgensen FO
    Acta Physiol Scand; 1977 Aug; 100(4):393-403. PubMed ID: 906847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency dependent changes in the amplitude of the cochlear microphonic potential of the pigeon ear during transient anoxia.
    Jorgensen F
    Acta Physiol Scand; 1975 May; 94(1):14-28. PubMed ID: 1155163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies.
    Salt AN; DeMott JE
    J Acoust Soc Am; 1999 Aug; 106(2):847-56. PubMed ID: 10462790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of modulation of basilar membrane position on the cochlear microphonic.
    Pierson M; Møller A
    Hear Res; 1980 Mar; 2(2):151-62. PubMed ID: 7364670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibular and cochlear responses to acoustic transients. Some properties of whole-nerve action potentials in pigeons.
    Wit HP; Bleeker JD; Segenhout JH
    Acta Otolaryngol; 1981; 92(5-6):409-22. PubMed ID: 6976059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental aural barotrauma. Electrophysiological and morphological findings.
    Lamkin R; Axelsson A; McPherson D; Miller J
    Acta Otolaryngol Suppl; 1975; 335():1-24. PubMed ID: 1062114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Travelling wave motion along the pigeon basilar membrane.
    Smolders JW; Gummer AW; Klinke R
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):93-7. PubMed ID: 3703535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Furosemide has no effect on endocochlear potential and tuning properties of primary afferent fibres in the pigeon inner ear.
    Schermuly L; Vossieck T; Klinke R
    Hear Res; 1990 Dec; 50(1-2):295-8. PubMed ID: 2076980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physiological frequency-position map of the chinchilla cochlea.
    Müller M; Hoidis S; Smolders JW
    Hear Res; 2010 Sep; 268(1-2):184-93. PubMed ID: 20685384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion.
    Patuzzi R; Sellick PM; Johnstone BM
    Hear Res; 1984 Jan; 13(1):19-27. PubMed ID: 6706859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial current flow and source density in the basal scala tympani.
    Garcia P; Clopton BM
    Hear Res; 1987 Nov; 31(1):55-64. PubMed ID: 3429349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear mechanisms at low frequencies in the guinea pig.
    Franke R; Dancer A
    Arch Otorhinolaryngol; 1982; 234(2):213-8. PubMed ID: 7092710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrostatic pressure in the inner ear fluid compartments and its effects on inner ear function.
    Böhmer A
    Acta Otolaryngol Suppl; 1993; 507():3-24. PubMed ID: 8273452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve.
    Evans EF
    J Physiol; 1972 Oct; 226(1):263-87. PubMed ID: 5083170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.