These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 9068641)
21. Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. Gomelsky M; Kaplan S J Bacteriol; 1997 Jan; 179(1):128-34. PubMed ID: 8981989 [TBL] [Abstract][Full Text] [Related]
22. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. Eraso JM; Kaplan S J Bacteriol; 1995 May; 177(10):2695-706. PubMed ID: 7751278 [TBL] [Abstract][Full Text] [Related]
23. Identification and in vivo characterization of PpaA, a regulator of photosystem formation in Rhodobacter sphaeroides. Gomelsky L; Sram J; Moskvin OV; Horne IM; Dodd HN; Pemberton JM; McEwan AG; Kaplan S; Gomelsky M Microbiology (Reading); 2003 Feb; 149(Pt 2):377-388. PubMed ID: 12624200 [TBL] [Abstract][Full Text] [Related]
24. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. Qian Y; Tabita FR J Bacteriol; 1996 Jan; 178(1):12-8. PubMed ID: 8550404 [TBL] [Abstract][Full Text] [Related]
25. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly. Gong L; Lee JK; Kaplan S J Bacteriol; 1994 May; 176(10):2946-61. PubMed ID: 8188596 [TBL] [Abstract][Full Text] [Related]
26. cis-acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides. Lee JK; Kaplan S J Bacteriol; 1992 Feb; 174(4):1146-57. PubMed ID: 1735709 [TBL] [Abstract][Full Text] [Related]
27. Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. Zeilstra-Ryalls JH; Kaplan S J Bacteriol; 1998 Mar; 180(6):1496-503. PubMed ID: 9515919 [TBL] [Abstract][Full Text] [Related]
28. A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Braatsch S; Gomelsky M; Kuphal S; Klug G Mol Microbiol; 2002 Aug; 45(3):827-36. PubMed ID: 12139627 [TBL] [Abstract][Full Text] [Related]
29. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. Neidle EL; Kaplan S J Bacteriol; 1992 Oct; 174(20):6444-54. PubMed ID: 1400197 [TBL] [Abstract][Full Text] [Related]
30. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. Hunter CN; Hundle BS; Hearst JE; Lang HP; Gardiner AT; Takaichi S; Cogdell RJ J Bacteriol; 1994 Jun; 176(12):3692-7. PubMed ID: 8206847 [TBL] [Abstract][Full Text] [Related]
31. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. Oh JI; Eraso JM; Kaplan S J Bacteriol; 2000 Jun; 182(11):3081-7. PubMed ID: 10809685 [TBL] [Abstract][Full Text] [Related]
32. Complementation of a reaction center-deficient Rhodobacter sphaeroides pufLMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive phenotype. Farchaus JW; Gruenberg H; Oesterhelt D J Bacteriol; 1990 Feb; 172(2):977-85. PubMed ID: 2404961 [TBL] [Abstract][Full Text] [Related]
33. Analysis of the fnrL gene and its function in Rhodobacter capsulatus. Zeilstra-Ryalls JH; Gabbert K; Mouncey NJ; Kaplan S; Kranz RG J Bacteriol; 1997 Dec; 179(23):7264-73. PubMed ID: 9393689 [TBL] [Abstract][Full Text] [Related]
34. Genetic evidence for the role of isocytochrome c2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants. Rott MA; Witthuhn VC; Schilke BA; Soranno M; Ali A; Donohue TJ J Bacteriol; 1993 Jan; 175(2):358-66. PubMed ID: 8380401 [TBL] [Abstract][Full Text] [Related]
35. The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Toledo-Cuevas M; Barquera B; Gennis RB; Wikström M; García-Horsman JA Biochim Biophys Acta; 1998 Jul; 1365(3):421-34. PubMed ID: 9711295 [TBL] [Abstract][Full Text] [Related]
36. Organization and expression of the Rhodobacter sphaeroides cycFG operon. Flory JE; Donohue TJ J Bacteriol; 1995 Aug; 177(15):4311-20. PubMed ID: 7543472 [TBL] [Abstract][Full Text] [Related]
37. PcrX, an sRNA derived from the 3'- UTR of the Rhodobacter sphaeroides puf operon modulates expression of puf genes encoding proteins of the bacterial photosynthetic apparatus. Eisenhardt KMH; Reuscher CM; Klug G Mol Microbiol; 2018 Nov; 110(3):325-334. PubMed ID: 29995316 [TBL] [Abstract][Full Text] [Related]
38. Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb3 cytochrome c oxidase on its function. Oh JI J Microbiol; 2006 Jun; 44(3):284-92. PubMed ID: 16820758 [TBL] [Abstract][Full Text] [Related]
39. Interplay between formation of photosynthetic complexes and expression of genes for iron-sulfur cluster assembly in Rhodobacter sphaeroides? Nie X; Jäger A; Börner J; Klug G Photosynth Res; 2021 Jan; 147(1):39-48. PubMed ID: 33064275 [TBL] [Abstract][Full Text] [Related]
40. Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. Lang HP; Cogdell RJ; Gardiner AT; Hunter CN J Bacteriol; 1994 Jul; 176(13):3859-69. PubMed ID: 8021167 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]