These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9068826)
1. Metarhodopsin III formation and decay kinetics: comparison of bovine and human rhodopsin. Lewis JW; van Kuijk FJ; Carruthers JA; Kliger DS Vision Res; 1997 Jan; 37(1):1-8. PubMed ID: 9068826 [TBL] [Abstract][Full Text] [Related]
2. The identity of metarhodopsin III. Kolesnikov AV; Golobokova EY; Govardovskii VI Vis Neurosci; 2003; 20(3):249-65. PubMed ID: 14570247 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS Biochemistry; 1993 Dec; 32(50):13861-72. PubMed ID: 8268161 [TBL] [Abstract][Full Text] [Related]
4. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II. Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214 [TBL] [Abstract][Full Text] [Related]
5. Biochemical aspects of the visual process. XL. Spectral and chemical analysis of metarhodopsin III in photoreceptor membrane suspensions. van Breugel PJ; Bovee-Geurts PH; Bonting SL; Daemen FJ Biochim Biophys Acta; 1979 Oct; 557(1):188-98. PubMed ID: 549636 [TBL] [Abstract][Full Text] [Related]
6. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Bennett N; Michel-Villaz M; Kühn H Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939 [TBL] [Abstract][Full Text] [Related]
7. Interconversion of metarhodopsins I and II: a branched photointermediate decay model. Straume M; Mitchell DC; Miller JL; Litman BJ Biochemistry; 1990 Oct; 29(39):9135-42. PubMed ID: 2271583 [TBL] [Abstract][Full Text] [Related]
8. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra. Klinger AL; Braiman MS Biophys J; 1992 Nov; 63(5):1244-55. PubMed ID: 1477276 [TBL] [Abstract][Full Text] [Related]
9. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280 [TBL] [Abstract][Full Text] [Related]
10. Bleaching kinetics of artificial visual pigments with modifications near the ring-polyene chain connection. Szundi I; de Lera AR; Pazos Y; Alvarez R; Oliana M; Sheves M; Lewis JW; Kliger DS Biochemistry; 2002 Feb; 41(6):2028-35. PubMed ID: 11827550 [TBL] [Abstract][Full Text] [Related]
11. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction]. Orlov NIa; Fesenko EE Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116 [TBL] [Abstract][Full Text] [Related]
12. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis. Gibson NJ; Brown MF Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536 [TBL] [Abstract][Full Text] [Related]
13. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt. Mitchell DC; Kibelbek J; Litman BJ Biochemistry; 1991 Jan; 30(1):37-42. PubMed ID: 1899020 [TBL] [Abstract][Full Text] [Related]
14. Room temperature trapping of rhodopsin photointermediates. Sikora S; Little AS; Dewey TG Biochemistry; 1994 Apr; 33(15):4454-9. PubMed ID: 8161500 [TBL] [Abstract][Full Text] [Related]
15. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes. Hofmann KP; Emeis D; Schnetkamp PP Biochim Biophys Acta; 1983 Oct; 725(1):60-70. PubMed ID: 6313051 [TBL] [Abstract][Full Text] [Related]
16. Photolysis intermediates of human rhodopsin. Lewis JW; van Kuijk FJ; Thorgeirsson TE; Kliger DS Biochemistry; 1991 Dec; 30(48):11372-6. PubMed ID: 1742277 [TBL] [Abstract][Full Text] [Related]
17. Effects of pH on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Jäger S; Szundi I; Lewis JW; Mah TL; Kliger DS Biochemistry; 1998 May; 37(19):6998-7005. PubMed ID: 9578587 [TBL] [Abstract][Full Text] [Related]
18. Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin. Kibelbek J; Mitchell DC; Beach JM; Litman BJ Biochemistry; 1991 Jul; 30(27):6761-8. PubMed ID: 1905955 [TBL] [Abstract][Full Text] [Related]
19. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes. Baldwin PA; Hubbell WL Biochemistry; 1985 May; 24(11):2624-32. PubMed ID: 4027217 [TBL] [Abstract][Full Text] [Related]
20. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro. Sakamoto T; Khorana HG Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]