BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9069440)

  • 1. Quinolinic acid accumulation in injured spinal cord: time course, distribution, and species differences between rat and guinea pig.
    Blight AR; Leroy EC; Heyes MP
    J Neurotrauma; 1997 Feb; 14(2):89-98. PubMed ID: 9069440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolinic acid accumulation and functional deficits following experimental spinal cord injury.
    Blight AR; Cohen TI; Saito K; Heyes MP
    Brain; 1995 Jun; 118 ( Pt 3)():735-52. PubMed ID: 7600090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of methylprednisolone and 4-chloro-3-hydroxyanthranilic acid in experimental spinal cord injury in the guinea pig appear to be mediated by different and potentially complementary mechanisms.
    Yates JR; Gay EA; Heyes MP; Blight AR
    Spinal Cord; 2014 Sep; 52(9):662-6. PubMed ID: 25047053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-chloro-3-hydroxyanthranilate reduces local quinolinic acid synthesis, improves functional recovery, and preserves white matter after spinal cord injury.
    Yates JR; Heyes MP; Blight AR
    J Neurotrauma; 2006 Jun; 23(6):866-81. PubMed ID: 16774472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury.
    Blight AR; Saito K; Heyes MP
    Brain Res; 1993 Dec; 632(1-2):314-6. PubMed ID: 8149236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevation of the neurotoxin quinolinic acid occurs following spinal cord trauma.
    Popovich PG; Reinhard JF; Flanagan EM; Stokes BT
    Brain Res; 1994 Jan; 633(1-2):348-52. PubMed ID: 8137170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kynurenine pathway and neurologic disease. Therapeutic strategies.
    Heyes MP
    Adv Exp Med Biol; 1996; 398():125-9. PubMed ID: 8906254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis.
    Flanagan EM; Erickson JB; Viveros OH; Chang SY; Reinhard JF
    J Neurochem; 1995 Mar; 64(3):1192-6. PubMed ID: 7861150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of ICAM-1 and CD11b after experimental spinal cord injury in rats.
    Isaksson J; Farooque M; Holtz A; Hillered L; Olsson Y
    J Neurotrauma; 1999 Feb; 16(2):165-73. PubMed ID: 10098961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered tryptophan metabolism in mice with herpes simplex virus encephalitis: increases in spinal cord quinolinic acid.
    Reinhard JF
    Neurochem Res; 1998 May; 23(5):661-5. PubMed ID: 9566604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular neuroinflammation in a lateral forceps compression model of spinal cord injury.
    Vaughn CN; Iafrate JL; Henley JB; Stevenson EK; Shlifer IG; Jones TB
    Anat Rec (Hoboken); 2013 Aug; 296(8):1229-46. PubMed ID: 23775900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain extracellular quinolinic acid in chronic experimental hepatic encephalopathy as assessed by in vivo microdialysis: acute effects of L-tryptophan.
    Bergqvist PB; Heyes MP; Apelqvist G; Butterworth RF; Bengtsson F
    Neuropsychopharmacology; 1996 Oct; 15(4):382-9. PubMed ID: 8887992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology.
    Blight AR
    J Neurol Sci; 1991 Jun; 103(2):156-71. PubMed ID: 1880533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury.
    Popovich PG; Horner PJ; Mullin BB; Stokes BT
    Exp Neurol; 1996 Dec; 142(2):258-75. PubMed ID: 8934558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in quinolinic acid production and its related enzymes following D-galactosamine and lipopolysaccharide-induced hepatic injury.
    Ohashi H; Saito K; Fujii H; Wada H; Furuta N; Takemura M; Maeda S; Seishima M
    Arch Biochem Biophys; 2004 Aug; 428(2):154-9. PubMed ID: 15246871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury.
    Theriault E; Frankenstein UN; Hertzberg EL; Nagy JI
    J Comp Neurol; 1997 Jun; 382(2):199-214. PubMed ID: 9183689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury.
    Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A
    Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Expression of nestin and glial fibrillary acidic protein in injured spinal cord of adult rats at different time].
    Yang P; He X; Qu J; Li H; Lan B; Yuan P; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):411-5. PubMed ID: 16038450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in free fatty acids, phospholipids, and cholesterol following impact injury to the rat spinal cord.
    Demediuk P; Daly MP; Faden AI
    J Neurosci Res; 1989 May; 23(1):95-106. PubMed ID: 2520534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.