These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9069622)
1. Classification by multiple-resolution statistical analysis with application to automated recognition of marine mammal sounds. Hayward TJ J Acoust Soc Am; 1997 Mar; 101(3):1516-26. PubMed ID: 9069622 [TBL] [Abstract][Full Text] [Related]
2. Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea. Rideout BP; Dosso SE; Hannay DE J Acoust Soc Am; 2013 Sep; 134(3):2534-45. PubMed ID: 23968051 [TBL] [Abstract][Full Text] [Related]
3. Automatic recognition of harmonic bird sounds using a frequency track extraction algorithm. Heller JR; Pinezich JD J Acoust Soc Am; 2008 Sep; 124(3):1830-7. PubMed ID: 19045673 [TBL] [Abstract][Full Text] [Related]
4. Automated segmentation of linear time-frequency representations of marine-mammal sounds. Dadouchi F; Gervaise C; Ioana C; Huillery J; Mars J J Acoust Soc Am; 2013 Sep; 134(3):2546-55. PubMed ID: 23968052 [TBL] [Abstract][Full Text] [Related]
5. A source separation approach to enhancing marine mammal vocalizations. Gur MB; Niezrecki C J Acoust Soc Am; 2009 Dec; 126(6):3062-70. PubMed ID: 20000920 [TBL] [Abstract][Full Text] [Related]
6. PROTAX-Sound: A probabilistic framework for automated animal sound identification. de Camargo UM; Somervuo P; Ovaskainen O PLoS One; 2017; 12(9):e0184048. PubMed ID: 28863178 [TBL] [Abstract][Full Text] [Related]
7. Analysis and localization of blue whale vocalizations in the Solomon Sea using waveform amplitude data. Frank SD; Ferris AN J Acoust Soc Am; 2011 Aug; 130(2):731-6. PubMed ID: 21877788 [TBL] [Abstract][Full Text] [Related]
8. Bayesian environmental inversion of airgun modal dispersion using a single hydrophone in the Chukchi Sea. Warner GA; Dosso SE; Dettmer J; Hannay DE J Acoust Soc Am; 2015 Jun; 137(6):3009-23. PubMed ID: 26093393 [TBL] [Abstract][Full Text] [Related]
9. An automatic detection algorithm for extracting the representative frequency of cetacean tonal sounds. Lin TH; Chou LS; Akamatsu T; Chan HC; Chen CF J Acoust Soc Am; 2013 Sep; 134(3):2477-85. PubMed ID: 23968045 [TBL] [Abstract][Full Text] [Related]
10. Introduction to the special issue on methods for marine mammal passive acoustics. Mellinger DK; Heimlich SL J Acoust Soc Am; 2013 Sep; 134(3):2381-2. PubMed ID: 23968034 [No Abstract] [Full Text] [Related]
11. Spectrogram denoising and automated extraction of the fundamental frequency variation of dolphin whistles. Mallawaarachchi A; Ong SH; Chitre M; Taylor E J Acoust Soc Am; 2008 Aug; 124(2):1159-70. PubMed ID: 18681604 [TBL] [Abstract][Full Text] [Related]
12. Automatic detection and classification of odontocete whistles. Gillespie D; Caillat M; Gordon J; White P J Acoust Soc Am; 2013 Sep; 134(3):2427-37. PubMed ID: 23968040 [TBL] [Abstract][Full Text] [Related]
13. Classification of mysticete sounds using machine learning techniques. Halkias XC; Paris S; Glotin H J Acoust Soc Am; 2013 Nov; 134(5):3496-505. PubMed ID: 24180760 [TBL] [Abstract][Full Text] [Related]
14. Bayesian tracking of multiple acoustic sources in an uncertain ocean environment. Dosso SE; Wilmut MJ J Acoust Soc Am; 2013 Apr; 133(4):EL274-80. PubMed ID: 23556691 [TBL] [Abstract][Full Text] [Related]