These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9069623)

  • 1. Frequency dependence of acoustic distortion products in a locally active model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1997 Mar; 101(3):1527-31. PubMed ID: 9069623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-tone distortion in reticular lamina vibration of the living cochlea.
    Ren T; He W
    Commun Biol; 2020 Jan; 3(1):35. PubMed ID: 31965040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A second cochlear-frequency map that correlates distortion product and neural tuning measurements.
    Allen JB; Fahey PF
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):809-16. PubMed ID: 8370887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea.
    Khanna SM; Flock A; Ulfendahl M
    Acta Otolaryngol Suppl; 1989; 467():151-6. PubMed ID: 2626923
    [No Abstract]   [Full Text] [Related]  

  • 5. [The relation between cochlear distortion products and frequency tuning characteristics revealed by laser interferometery].
    Zhang YP; Huang G; Long XM; Yan BY; Long ZC
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Sep; 31(18):1423-1426. PubMed ID: 29797998
    [No Abstract]   [Full Text] [Related]  

  • 6. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla.
    Xia A; Liu X; Raphael PD; Applegate BE; Oghalai JS
    Nat Commun; 2016 Oct; 7():13133. PubMed ID: 27796310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear frequency sharpening-a new synthesis.
    Manley GA
    Acta Otolaryngol; 1978; 85(3-4):167-79. PubMed ID: 636866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical filtering of sound in the inner ear.
    Brown AM; Gaskill SA; Williams DM
    Proc Biol Sci; 1992 Oct; 250(1327):29-34. PubMed ID: 1361059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A micromechanical contribution to cochlear tuning and tonotopic organization.
    Holton T; Hudspeth AJ
    Science; 1983 Nov; 222(4623):508-10. PubMed ID: 6623089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear micromechanics--a mechanism for transforming mechanical to neural tuning within the cochlea.
    Allen JB
    J Acoust Soc Am; 1977 Oct; 62(4):930-9. PubMed ID: 198449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea.
    Cooper NP
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):277-88. PubMed ID: 9547400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane.
    Russell IJ; Nilsen KE
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2660-4. PubMed ID: 9122252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea.
    Russell IJ; Kössl M
    J Neurophysiol; 1999 Aug; 82(2):676-86. PubMed ID: 10444665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermodulation components in inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1038-48. PubMed ID: 9265752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-tone suppression in a locally active nonlinear model of the cochlea.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1994 Oct; 96(4):2156-65. PubMed ID: 7963029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A traveling-wave amplifier model of the cochlea.
    Hubbard A
    Science; 1993 Jan; 259(5091):68-71. PubMed ID: 8418496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.