These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9069623)

  • 21. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli.
    Ramamoorthy S; Deo NV; Grosh K
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2758-73. PubMed ID: 17550176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models.
    How JA; Elliott SJ; Lineton B
    J Acoust Soc Am; 2010 Feb; 127(2):652-5. PubMed ID: 20136186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The origin of tuning in turtle cochlear hair cells.
    Fettiplace R; Crawford AC
    Hear Res; 1980 Jun; 2(3-4):447-54. PubMed ID: 7410249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverted direction of wave propagation (IDWP) in the cochlea.
    de Boer E; Zheng J; Porsov E; Nuttall AL
    J Acoust Soc Am; 2008 Mar; 123(3):1513-21. PubMed ID: 18345840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stiffness gradient along the basilar membrane as a basis for spatial frequency analysis within the cochlea.
    Ehret G
    J Acoust Soc Am; 1978 Dec; 64(6):1723-6. PubMed ID: 739099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency tuning of mechanical responses in the mammalian cochlea.
    Robles L; Alcayaga C
    Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-tone distortion in intracochlear pressure.
    Dong W; Olson ES
    J Acoust Soc Am; 2005 May; 117(5):2999-3015. PubMed ID: 15957770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two modes of motion of the alligator lizard cochlea: measurements and model predictions.
    Aranyosi AJ; Freeman DM
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1585-92. PubMed ID: 16240819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoupling the level dependence of the basilar membrane gain and phase in nonlinear cochlea models.
    Sisto R; Moleti A; Altoè A
    J Acoust Soc Am; 2015 Aug; 138(2):EL155-60. PubMed ID: 26328742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In defence of the travelling wave concept.
    Tonndorf J
    J Otolaryngol; 1980 Aug; 9(4):316-28. PubMed ID: 7420522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Otoacoustic" emissions in a nonlinear cochlear hardware model with feedback.
    Zwicker E
    J Acoust Soc Am; 1986 Jul; 80(1):154-62. PubMed ID: 3745661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two sources of acoustic distortion products from the human cochlea.
    Brown AM; Harris FP; Beveridge HA
    J Acoust Soc Am; 1996 Nov; 100(5):3260-7. PubMed ID: 8914308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harmonic distortion in intracochlear pressure and its analysis to explore the cochlear amplifier.
    Olson ES
    J Acoust Soc Am; 2004 Mar; 115(3):1230-41. PubMed ID: 15058344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave propagation patterns in a "classical" three-dimensional model of the cochlea.
    de Boer E; Nuttall AL; Shera CA
    J Acoust Soc Am; 2007 Jan; 121(1):352-62. PubMed ID: 17297790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-tone distortion in the basilar membrane of the cochlea.
    Robles L; Ruggero MA; Rich NC
    Nature; 1991 Jan; 349(6308):413-4. PubMed ID: 1992342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry].
    Long X; Zhang Y; Lu J; Long C
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep; 29(18):1644-7. PubMed ID: 26790268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.