These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 9069639)

  • 1. An investigation of penetration depth control using parallel opposed ultrasound arrays and a scanning reflector.
    Moros EG; Fan X; Straube WL
    J Acoust Soc Am; 1997 Mar; 101(3):1734-41. PubMed ID: 9069639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental assessment of power and temperature penetration depth control with a dual frequency ultrasonic system.
    Moros EG; Fan X; Straube WL
    Med Phys; 1999 May; 26(5):810-7. PubMed ID: 10360546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SURLAS: a new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: applicator description.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Jan; 32(1):230-40. PubMed ID: 15719974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy.
    Novák P; Moros EG; Straube WL; Myerson RJ
    Med Phys; 2005 Nov; 32(11):3246-56. PubMed ID: 16372408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrasound system for simultaneous ultrasound hyperthermia and photon beam irradiation.
    Straube WL; Moros EG; Low DA; Klein EE; Willcut VM; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1996 Dec; 36(5):1189-200. PubMed ID: 8985042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A system for the simultaneous delivery of intraoperative radiation and ultrasound hyperthermia.
    Montes H; Hynynen K
    Int J Hyperthermia; 1995; 11(1):109-19. PubMed ID: 7714364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential for power deposition conformability using reflected-scanned planar ultrasound.
    Moros EG; Straube WL; Myerson RJ
    Int J Hyperthermia; 1996; 12(6):723-36. PubMed ID: 8950153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and in vitro evaluation of temperature fluctuations during reflected-scanned planar ultrasound hyperthermia.
    Moros EG; Fan X; Straube WL; Myerson RJ
    Int J Hyperthermia; 1998; 14(4):367-82. PubMed ID: 9690149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocused or focused ultrasound.
    Lele PP; Parker KJ
    Br J Cancer Suppl; 1982 Mar; 5():108-21. PubMed ID: 6950746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study.
    Ellens N; Hynynen K
    Med Phys; 2015 Aug; 42(8):4896-10. PubMed ID: 26233216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Present and future technology for simultaneous superficial thermoradiotherapy of breast cancer.
    Moros EG; Peñagaricano J; Novàk P; Straube WL; Myerson RJ
    Int J Hyperthermia; 2010; 26(7):699-709. PubMed ID: 20849263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a scanned cylindrical ultrasound system for breast hyperthermia.
    Ju KC; Tseng LT; Chen YY; Lin WL
    Phys Med Biol; 2006 Feb; 51(3):539-55. PubMed ID: 16424580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical studies with ultrasound-induced hyperthermia.
    Marmor JB; Pounds D; Hahn GM
    Natl Cancer Inst Monogr; 1982 Jun; 61():333-7. PubMed ID: 6757750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The feasibility of using electrically focused ultrasound arrays to induce deep hyperthermia via body cavities.
    Diederich CJ; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):207-19. PubMed ID: 18267577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a high-resolution depth encoding PET detector using barium sulfate reflector.
    Kuang Z; Wang X; Li C; Deng X; Feng K; Hu Z; Fu X; Ren N; Zhang X; Zheng Y; Liang D; Liu X; Zheng H; Yang Y
    Phys Med Biol; 2017 Jul; 62(15):5945-5958. PubMed ID: 28682792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.