These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 907094)
1. Intermediates in the biosynthesis of cyanogenic glucosides determined by use of gas chromatography coupled with a gas proportional counter. Moller BL Anal Biochem; 1977 Aug; 81(2):292-304. PubMed ID: 907094 [No Abstract] [Full Text] [Related]
2. The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. Møller BL; Conn EE J Biol Chem; 1980 Apr; 255(7):3049-56. PubMed ID: 7358727 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of cyanogenic glycosides. Conn EE Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367 [No Abstract] [Full Text] [Related]
4. The biosynthesis of cyanogenic glucosides in higher plants. The (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench. Halkier BA; Olsen CE; Møller BL J Biol Chem; 1989 Nov; 264(33):19487-94. PubMed ID: 2684955 [TBL] [Abstract][Full Text] [Related]
5. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides. Tapper BA; Butler GW Biochem J; 1971 Oct; 124(5):935-41. PubMed ID: 5131015 [TBL] [Abstract][Full Text] [Related]
7. The biosynthesis of cyanogenic glucosides in Linum usitatissimum (linen flax) in vitro. Cutler AJ; Conn EE Arch Biochem Biophys; 1981 Dec; 212(2):468-74. PubMed ID: 7325672 [No Abstract] [Full Text] [Related]
8. The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench. Møller BL; Conn EE J Biol Chem; 1979 Sep; 254(17):8575-83. PubMed ID: 468842 [TBL] [Abstract][Full Text] [Related]
9. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868 [TBL] [Abstract][Full Text] [Related]
10. The case for sporadic cyanogenic glycoside evolution in plants. Sánchez-Pérez R; Neilson EH Curr Opin Plant Biol; 2024 Oct; 81():102608. PubMed ID: 39089185 [TBL] [Abstract][Full Text] [Related]
11. Conversion of nitriles and alpha-hydroxynitriles to cyanogenic glucosides in flax seedlings and cherry laurel leaves. Hahlbrock K; Tapper BA; Butler GW; Conn EE Arch Biochem Biophys; 1968 Jun; 125(3):1013-6. PubMed ID: 5677586 [No Abstract] [Full Text] [Related]
12. Cyanogenic glucosides and plant-insect interactions. Zagrobelny M; Bak S; Rasmussen AV; Jørgensen B; Naumann CM; Lindberg Møller B Phytochemistry; 2004 Feb; 65(3):293-306. PubMed ID: 14751300 [TBL] [Abstract][Full Text] [Related]
13. The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench and the involvement of 1-ACI-nitro-2-(p-hydroxyphenyl)ethane as an intermediate. Halkier BA; Møller BL J Biol Chem; 1990 Dec; 265(34):21114-21. PubMed ID: 2250015 [TBL] [Abstract][Full Text] [Related]
14. The origin of the glucosidic linkage oxygen of the cyanogenic glucosides, linamarin and lotaustralin. Zilg H; Tapper BA; Conn EE J Biol Chem; 1972 Apr; 247(8):2384-6. PubMed ID: 5019952 [No Abstract] [Full Text] [Related]
15. Biosynthesis of cyanogenic glycosides. Conn EE Naturwissenschaften; 1979 Jan; 66(1):28-34. PubMed ID: 423994 [TBL] [Abstract][Full Text] [Related]
16. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. Zagrobelny M; Møller BL Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539 [TBL] [Abstract][Full Text] [Related]
17. In vitro biosynthesis of the cyanogenic glucoside taxiphyllin in Triglochin maritima. Hösel W; Nahrstedt A Arch Biochem Biophys; 1980 Sep; 203(2):753-7. PubMed ID: 7458352 [No Abstract] [Full Text] [Related]
18. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Bak S; Olsen CE; Halkier BA; Møller BL Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360 [TBL] [Abstract][Full Text] [Related]
19. Studies on monoterpene glucosides and related natural products. XXXI. Gas chromatography and gas chromatography-mass spectrometry of iridoid and secoiridoid glucosides. Inouye H; Uobe K; Hirai M; Masada Y; Hashimoto K J Chromatogr; 1976 Mar; 118(2):201-16. PubMed ID: 1254661 [TBL] [Abstract][Full Text] [Related]
20. The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor. MacFarlane IJ; Lees EM; Conn EE J Biol Chem; 1975 Jun; 250(12):4708-13. PubMed ID: 237909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]