These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 9072380)
1. Animal models of vascular dementia with emphasis on stroke-prone spontaneously hypertensive rats. Saito H; Togashi H; Yoshioka M; Nakamura N; Minami M; Parvez H Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S257-9. PubMed ID: 9072380 [TBL] [Abstract][Full Text] [Related]
2. Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Kimura S; Saito H; Minami M; Togashi H; Nakamura N; Nemoto M; Parvez HS Toxicology; 2000 Nov; 153(1-3):167-78. PubMed ID: 11090955 [TBL] [Abstract][Full Text] [Related]
3. Cholinergic changes in the hippocampus of stroke-prone spontaneously hypertensive rats. Togashi H; Kimura S; Matsumoto M; Yoshioka M; Minami M; Saito H Stroke; 1996 Mar; 27(3):520-5; discussion 525-6. PubMed ID: 8610323 [TBL] [Abstract][Full Text] [Related]
4. Dorsal cerebral collaterals of stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY). Coyle P Anat Rec; 1987 May; 218(1):40-4. PubMed ID: 3605659 [TBL] [Abstract][Full Text] [Related]
5. Neurochemical profiles in cerebrospinal fluid of stroke-prone spontaneously hypertensive rats. Togashi H; Matsumoto M; Yoshioka M; Hirokami M; Minami M; Saito H Neurosci Lett; 1994 Jan; 166(1):117-20. PubMed ID: 7514774 [TBL] [Abstract][Full Text] [Related]
6. Analysis of circadian blood pressure rhythm and target-organ damage in stroke-prone spontaneously hypertensive rats. Shimamura T; Nakajima M; Iwasaki T; Hayasaki Y; Yonetani Y; Iwaki K J Hypertens; 1999 Feb; 17(2):211-20. PubMed ID: 10067790 [TBL] [Abstract][Full Text] [Related]
7. Urinary excretion of 19-noraldosterone in the spontaneously hypertensive rat and stroke-prone spontaneously hypertensive rat. Takeda Y; Miyamori I; Yoneda T; Hurukawa K; Inaba S; Ito Y; Takeda R Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S20-2. PubMed ID: 9072356 [TBL] [Abstract][Full Text] [Related]
8. Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats. Minami M; Kimura S; Endo T; Hamaue N; Hirafuji M; Togashi H; Matsumoto M; Yoshioka M; Saito H; Watanabe S; Kobayashi T; Okuyama H Pharmacol Biochem Behav; 1997 Dec; 58(4):1123-9. PubMed ID: 9408223 [TBL] [Abstract][Full Text] [Related]
9. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats. Salomone S; Morel N; Godfraind T Br J Pharmacol; 1997 Jul; 121(6):1051-8. PubMed ID: 9249238 [TBL] [Abstract][Full Text] [Related]
10. Enhanced thrombogenicity and altered hemodynamics in the cerebral microvasculature of stroke-prone spontaneously hypertensive rats. Noguchi T; Sasaki Y; Seki J; Giddings JC; Yamamoto J Haemostasis; 1997; 27(5):237-45. PubMed ID: 9690482 [TBL] [Abstract][Full Text] [Related]
11. Morphological changes in cerebral vascular smooth muscle cells in stroke-prone spontaneously hypertensive rats (SHRSP). A scanning and transmission electron microscopic study. Fujiwara T; Kondo M; Tabei R Virchows Arch B Cell Pathol Incl Mol Pathol; 1990; 58(5):377-82. PubMed ID: 1971133 [TBL] [Abstract][Full Text] [Related]
12. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure. Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062 [TBL] [Abstract][Full Text] [Related]
13. Age-related changes in cerebral and peripheral monoamine contents in stroke-prone spontaneously hypertensive rats. Uchida T; Nishimura Y; Suzuki A Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S80-2. PubMed ID: 9072453 [TBL] [Abstract][Full Text] [Related]
14. Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. McGill JK; Gallagher L; Carswell HV; Irving EA; Dominiczak AF; Macrae IM Stroke; 2005 Jan; 36(1):135-41. PubMed ID: 15569870 [TBL] [Abstract][Full Text] [Related]
15. Enhanced contractile responses mediated by different 5-HT receptor subtypes in basilar arteries, superior mesenteric arteries and thoracic aortas from stroke-prone spontaneously hypertensive rats. Nishimura Y; Suzuki A Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S99-101. PubMed ID: 9072460 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility to cerebral infarction in the stroke-prone spontaneously hypertensive rat is inherited as a dominant trait. Gratton JA; Sauter A; Rudin M; Lees KR; McColl J; Reid JL; Dominiczak AF; Macrae IM Stroke; 1998 Mar; 29(3):690-4. PubMed ID: 9506614 [TBL] [Abstract][Full Text] [Related]
17. There is no valid evidence presented as to an impaired endothelial NO system in the stroke-prone spontaneously hypertensive rats. Yamashita T; Taka T; Nojima R; Ohta Y; Seki J; Yamamoto J Thromb Res; 2002 Mar; 105(6):507-11. PubMed ID: 12091051 [TBL] [Abstract][Full Text] [Related]
18. Characterization of regional cerebral blood flow and expression of angiogenic growth factors in the frontal cortex of juvenile male SHRSP and SHR. Jesmin S; Togashi H; Mowa CN; Ueno K; Yamaguchi T; Shibayama A; Miyauchi T; Sakuma I; Yoshioka M Brain Res; 2004 Dec; 1030(2):172-82. PubMed ID: 15571667 [TBL] [Abstract][Full Text] [Related]
19. Changes in ambulation and drinking behavior related to stroke in stroke-prone spontaneously hypertensive rats. Minami M; Togashi H; Koike Y; Saito H; Nakamura N; Yasuda H Stroke; 1985; 16(1):44-8. PubMed ID: 3966264 [TBL] [Abstract][Full Text] [Related]
20. Genetic association of hypertension and vascular changes in stroke-prone spontaneously hypertensive rats. Bruner CA; Myers JH; Sing CF; Jokelainen PT; Webb RC Hypertension; 1986 Oct; 8(10):904-10. PubMed ID: 3759225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]