These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9073586)

  • 1. Selective protein covalent binding and target organ toxicity.
    Cohen SD; Pumford NR; Khairallah EA; Boekelheide K; Pohl LR; Amouzadeh HR; Hinson JA
    Toxicol Appl Pharmacol; 1997 Mar; 143(1):1-12. PubMed ID: 9073586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein targets of xenobiotic reactive intermediates.
    Pumford NR; Halmes NC
    Annu Rev Pharmacol Toxicol; 1997; 37():91-117. PubMed ID: 9131248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein adduct formation as a molecular mechanism in neurotoxicity.
    Lopachin RM; Decaprio AP
    Toxicol Sci; 2005 Aug; 86(2):214-25. PubMed ID: 15901921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent binding of xenobiotics to specific proteins in the liver.
    Pumford NR; Halmes NC; Hinson JA
    Drug Metab Rev; 1997; 29(1-2):39-57. PubMed ID: 9187510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of covalent binding.
    Bruno MK; Cohen SD
    Curr Protoc Toxicol; 2001 May; Chapter 2():Unit 2.3. PubMed ID: 23045043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems toxicology: modelling biomarkers of glutathione homeostasis and paracetamol metabolism.
    Stahl SH; Yates JW; Nicholls AW; Kenna JG; Coen M; Ortega F; Nicholson JK; Wilson ID
    Drug Discov Today Technol; 2015 Aug; 15():9-14. PubMed ID: 26464084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seminiferous tubule fluid secretion is a Sertoli cell microtubule-dependent process inhibited by 2,5-hexanedione exposure.
    Richburg JH; Redenbach DM; Boekelheide K
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):302-9. PubMed ID: 7940545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug bioactivation, covalent binding to target proteins and toxicity relevance.
    Zhou S; Chan E; Duan W; Huang M; Chen YZ
    Drug Metab Rev; 2005; 37(1):41-213. PubMed ID: 15747500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrahepatic tissue distribution, covalent binding, and toxicity of halothane in control and phenobarbital-pretreated rats.
    Rao GS; Grumley JO
    Pharmacol Ther Dent; 1978; 3(2-4):101-9. PubMed ID: 286368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane.
    Kenna JG; Satoh H; Christ DD; Pohl LR
    J Pharmacol Exp Ther; 1988 Jun; 245(3):1103-9. PubMed ID: 3385639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocols of in vitro protein covalent binding studies in liver.
    Lévesque JF; Day SH; Jones AN
    Methods Mol Biol; 2011; 691():283-301. PubMed ID: 20972760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetaminophen-induced hepatotoxicity. Analysis of total covalent binding vs. specific binding to cysteine.
    Matthews AM; Roberts DW; Hinson JA; Pumford NR
    Drug Metab Dispos; 1996 Nov; 24(11):1192-6. PubMed ID: 8937852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of covalent binding from halothane metabolism in hepatic microsomes from phenobarbital-induced and hyperthyroid rats.
    Smith AC; Roberts SM; James RC; Berman LM; Harbison RD
    Xenobiotica; 1988 Aug; 18(8):991-1001. PubMed ID: 3188577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significantly Different Covalent Binding of Oxidative Metabolites, Acyl Glucuronides, and S-Acyl CoA Conjugates Formed from Xenobiotic Carboxylic Acids in Human Liver Microsomes.
    Darnell M; Breitholtz K; Isin EM; Jurva U; Weidolf L
    Chem Res Toxicol; 2015 May; 28(5):886-96. PubMed ID: 25803559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunochemical detection and identification of protein adducts of diclofenac in the small intestine of rats: possible role in allergic reactions.
    Ware JA; Graf ML; Martin BM; Lustberg LR; Pohl LR
    Chem Res Toxicol; 1998 Mar; 11(3):164-71. PubMed ID: 9544613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of acetaminophen-induced hepatotoxicity: covalent binding versus oxidative stress.
    Gibson JD; Pumford NR; Samokyszyn VM; Hinson JA
    Chem Res Toxicol; 1996; 9(3):580-5. PubMed ID: 8728501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of protein adduction using mass spectrometry: Protein adducts as biomarkers and predictors of toxicity mechanisms.
    Yang X; Bartlett MG
    Rapid Commun Mass Spectrom; 2016 Mar; 30(5):652-64. PubMed ID: 26842586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of covalent binding to microsomal proteins in the hepatotoxicity of acetaminophen.
    Holtzman JL
    Drug Metab Rev; 1995; 27(1-2):277-97. PubMed ID: 7641580
    [No Abstract]   [Full Text] [Related]  

  • 19. Bioactivation and bound residues.
    Burgat-Sacaze V; Rico A; Delatour P
    Food Addit Contam; 1984; 1(2):121-9. PubMed ID: 6536524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive value of in vitro model systems in toxicology.
    Davila JC; Rodriguez RJ; Melchert RB; Acosta D
    Annu Rev Pharmacol Toxicol; 1998; 38():63-96. PubMed ID: 9597149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.