These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 907412)
1. The relative sensitivity of pyridoxal phosphate-dependent enzymes to inhibition in vitro. Kilgallon B; Shepherd DM Arch Int Pharmacodyn Ther; 1977 Jun; 227(2):272-82. PubMed ID: 907412 [TBL] [Abstract][Full Text] [Related]
2. 3-Hydrazinopyridazine derivatives as inhibitors of pyridoxal-phosphate dependent enzymes. Buffoni F; Carpi C; Banchelli Soldaini G; Raimondi L Farmaco Sci; 1980 Oct; 35(10):848-55. PubMed ID: 6778712 [TBL] [Abstract][Full Text] [Related]
3. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes. Gani D Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):131-9. PubMed ID: 1678532 [TBL] [Abstract][Full Text] [Related]
4. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Sandmeier E; Hale TI; Christen P Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483 [TBL] [Abstract][Full Text] [Related]
5. Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes. Pascarella S; Bossa F Protein Sci; 1994 Apr; 3(4):701-5. PubMed ID: 8003988 [TBL] [Abstract][Full Text] [Related]
6. Relationship between pyridoxal phosphate and some synthetic oestrogens, gonadotropin and thyroxine in their effects on kynurenine hydrolase and kynurenine aminotransferase enzymes of normal mouse liver. Abdel-Tawab GA; El-Zoghby SM; Saad AA Acta Vitaminol Enzymol; 1975; 29(1-6):326-31. PubMed ID: 1244117 [TBL] [Abstract][Full Text] [Related]
7. Seizure susceptibility in the developing mouse and its relationship to glutamate decarboxylase and pyridoxal phosphate in brain. Tapia R; Pasantes-Morales H; Taborda E; Pérez de la Mora M J Neurobiol; 1975 Mar; 6(2):159-70. PubMed ID: 171340 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of pyridoxal 5'-phosphate-dependent enzymes by 5-nitro-L-norvaline, an analog of L-glutamate. Alston TA; Bright HJ FEBS Lett; 1981 Apr; 126(2):269-71. PubMed ID: 7238876 [No Abstract] [Full Text] [Related]
9. Pyridoxal 5'-phosphate deficiency causes a loss of aromatic L-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic L-amino acid decarboxylase and vitamin B(6) deficiency states. Allen GF; Neergheen V; Oppenheim M; Fitzgerald JC; Footitt E; Hyland K; Clayton PT; Land JM; Heales SJ J Neurochem; 2010 Jul; 114(1):87-96. PubMed ID: 20403077 [TBL] [Abstract][Full Text] [Related]
10. Molecular basis for the irreversible inhibition of 4-aminobutyric acid:2-oxoglutarate and L-ornithine:2-oxoacid aminotransferases by 3-amino-1,5-cyclohexadienyl carboxylic acid (isogabaculline). Metcalf BW; Jung MJ Mol Pharmacol; 1979 Sep; 16(2):539-45. PubMed ID: 514257 [No Abstract] [Full Text] [Related]
11. Cloning and expression of a rat kidney cytosolic glutamine transaminase K that has strong sequence homology to kynurenine pyruvate aminotransferase. Abraham DG; Cooper AJ Arch Biochem Biophys; 1996 Nov; 335(2):311-20. PubMed ID: 8914928 [TBL] [Abstract][Full Text] [Related]
12. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. Wu F; Christen P; Gehring H FASEB J; 2011 Jul; 25(7):2109-22. PubMed ID: 21454364 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate. Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529 [TBL] [Abstract][Full Text] [Related]
14. The interaction of glutamate decarboxylase from Escherichia coli with substrate analogues modified at C-3 and C-4. Khristoforov RR; Sukhareva BS; Dixon HB; Sparkes MJ; Krasnov VP; Bukrina IM Biochem Mol Biol Int; 1995 May; 36(1):77-85. PubMed ID: 7663423 [TBL] [Abstract][Full Text] [Related]
15. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Momany C; Ghosh R; Hackert ML Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340 [TBL] [Abstract][Full Text] [Related]
16. [Effect of pyridoxal phosphate on gamma-aminobutyric acid metabolism in different sections of the brain in irradiated animals]. Tsybul'skiĭ VV; Nagiev ER Radiobiologiia; 1991; 31(2):201-8. PubMed ID: 1674611 [TBL] [Abstract][Full Text] [Related]
17. [Aspartate aminotransferase and glutamate dehydrogenase activity in the rat brain during infrared laser exposure]. Pikulev AT; Zyrianova TN; Lavrova VM; Khripchenko IP Radiobiologiia; 1989; 29(2):274-6. PubMed ID: 2717723 [TBL] [Abstract][Full Text] [Related]
18. The inhibition of mouse brain glutamate decarboxylase by some structural analogues of L-glutamic acid. Taberner PV; Pearce MJ; Watkins JC Biochem Pharmacol; 1977 Feb; 26(4):345-9. PubMed ID: 849326 [No Abstract] [Full Text] [Related]
19. Differences in some properties of newborn and adult brain glutamate decarboxylase. Tapia R; Meza-Ruíz G J Neurobiol; 1975 Mar; 6(2):171-81. PubMed ID: 1185180 [TBL] [Abstract][Full Text] [Related]
20. Pyritinol and the enzymes of gamma-aminobutyric acid (GABA) synthesis and degradation. Turský T Physiol Bohemoslov; 1988; 37(2):135-43. PubMed ID: 2975003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]