These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 907425)

  • 41. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert.
    Le TN; Mikolasch A; Awe S; Sheikhany H; Klenk HP; Schauer F
    J Basic Microbiol; 2010 Jun; 50(3):241-53. PubMed ID: 20143352
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain.
    Takeo M; Prabu SK; Kitamura C; Hirai M; Takahashi H; Kato D; Negoro S
    J Biosci Bioeng; 2006 Oct; 102(4):352-61. PubMed ID: 17116584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The metabolism of aromatic ring fission products by Bacillus stearothermophilus strain IC3.
    Adams D; Ribbons DW
    J Gen Microbiol; 1988 Dec; 134(12):3179-85. PubMed ID: 3269389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts].
    Ivoĭlov VS; Karasevich IuN
    Mikrobiologiia; 1983; 52(6):956-61. PubMed ID: 6669081
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400.
    Haddock JD; Horton JR; Gibson DT
    J Bacteriol; 1995 Jan; 177(1):20-6. PubMed ID: 8002618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase.
    Qu Y; Shi S; Ma Q; Kong C; Zhou H; Zhang X; Zhou J
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2064-75. PubMed ID: 23371781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of cyclic AMP on catabolite repression of Isocitrate lyase in Nocardia salmonicolor (NCIB9701).
    Westwood AW; Higgins IJ
    J Gen Microbiol; 1976 Nov; 97(1):133-5. PubMed ID: 186557
    [No Abstract]   [Full Text] [Related]  

  • 48. Two different primary oxidation mechanisms during biotransformation of thymol by gram-positive bacteria of the genera Nocardia and Mycobacterium.
    Hahn V; Sünwoldt K; Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1289-97. PubMed ID: 22828982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of 3-nitrocatechol by oxygenase-containing bacteria: optimization of the nitrobenzene biotransformation by Nocardia S3.
    Kieboom J; van den Brink H; Frankena J; de Bont JA
    Appl Microbiol Biotechnol; 2001 Apr; 55(3):290-5. PubMed ID: 11341308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The metabolism of cyclohexanol by Nocardia globerula CL1.
    Norris DB; Trudgill PW
    Biochem J; 1971 Feb; 121(3):363-70. PubMed ID: 5119767
    [TBL] [Abstract][Full Text] [Related]  

  • 51. THE BACTERIAL DEGRADATION OF CATECHOL.
    DAGLEY S; GIBSON DT
    Biochem J; 1965 May; 95(2):466-74. PubMed ID: 14340096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1.
    Tao Y; Fishman A; Bentley WE; Wood TK
    Appl Environ Microbiol; 2004 Jul; 70(7):3814-20. PubMed ID: 15240250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial degradation of [C14C]polystyrene and 1,3-diphenylbutane.
    Sielicki M; Focht DD; Martin JP
    Can J Microbiol; 1978 Jul; 24(7):798-803. PubMed ID: 98222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation of phenols by cells and cell-free enzymes from Candida tropicalis.
    Neujahr HY; Lindsjö S; Varga JM
    Antonie Van Leeuwenhoek; 1974; 40(2):209-16. PubMed ID: 4209029
    [No Abstract]   [Full Text] [Related]  

  • 55. Nocardia globerula NHB-2: a versatile nitrile-degrading organism.
    Bhalla TC; Kumar H
    Can J Microbiol; 2005 Aug; 51(8):705-8. PubMed ID: 16234868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum.
    Neujahr HY; Varga JM
    Eur J Biochem; 1970 Mar; 13(1):37-44. PubMed ID: 4392441
    [No Abstract]   [Full Text] [Related]  

  • 57. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4736-43. PubMed ID: 16085870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria.
    Watson GK; Cain RB
    Biochem J; 1975 Jan; 146(1):157-72. PubMed ID: 1147895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antioxidant enzymes are induced by phenol in the marine microalga Lingulodinium polyedrum.
    Martins PL; Marques LG; Colepicolo P
    Ecotoxicol Environ Saf; 2015 Jun; 116():84-9. PubMed ID: 25770655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.