These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 907425)

  • 61. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catechol and phenol degradation by a methanogenic population of bacteria.
    Healy JB; Young LY
    Appl Environ Microbiol; 1978 Jan; 35(1):216-8. PubMed ID: 623466
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [GLUCOSE METABOLISM IN SURFACTANTS PRODUCER NOCARDIA VACCINII IMV B-7405].
    Pirog TP; Shevchuk TA; Beregova KA
    Mikrobiol Z; 2015; 77(5):2-10. PubMed ID: 26638479
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium.
    Bisaillon JG; Lépine F; Beaudet R; Sylvestre M
    Can J Microbiol; 1993 Jul; 39(7):642-8. PubMed ID: 8364800
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR.
    Müller C; Petruschka L; Cuypers H; Burchhardt G; Herrmann H
    J Bacteriol; 1996 Apr; 178(7):2030-6. PubMed ID: 8606180
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases.
    Pascal RA; Huang DS
    Arch Biochem Biophys; 1986 Jul; 248(1):130-7. PubMed ID: 3015028
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catechol oxygenase induction in Pseudomonas aeruginosa.
    Farr DR; Cain RB
    Biochem J; 1968 Feb; 106(4):879-85. PubMed ID: 4966085
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Incorporation of organic compounds into cell protein by lithotrophic, ammonia-oxidizing bacteria.
    Martiny H; Koops HP
    Antonie Van Leeuwenhoek; 1982; 48(4):327-36. PubMed ID: 7149699
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures.
    Ulrich AC; Beller HR; Edwards EA
    Environ Sci Technol; 2005 Sep; 39(17):6681-91. PubMed ID: 16190227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Degradation of herbicide Alvison-8 by microorganisms].
    Finkel'shtein ZI; Golovleva LA; Golovlev EL; Skriabin GK
    Mikrobiologiia; 1976; 45(5):879-83. PubMed ID: 1004275
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transformation of difluorinated phenols by Penicillium frequentans Bi 7/2.
    Wunderwald U; Hofrichter M; Kreisell G; Fritsche W
    Biodegradation; 1997-1998; 8(6):379-85. PubMed ID: 15765583
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The "o-diphenol-row", a new method for the differentiation of nocardia: a preliminary report.
    Tanzil HO; Bönicke R
    Tubercle; 1968 Dec; 49(4):413-5. PubMed ID: 5716381
    [No Abstract]   [Full Text] [Related]  

  • 75. Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21.
    DiGeronimo MJ; Antoine AD
    Appl Environ Microbiol; 1976 Jun; 31(6):900-6. PubMed ID: 938041
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacterial reduction of fensulfothion and its hydrolysis product 4-methylsulfinyl phenol.
    Mac Rae IC; Cameron AJ
    Appl Environ Microbiol; 1985 Jan; 49(1):236-7. PubMed ID: 3156557
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria.
    Sparnins VL; Chapman PJ
    J Bacteriol; 1976 Jul; 127(1):362-6. PubMed ID: 931949
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanisms of steroid oxidation by microorganisms. 8. 3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, an intermediate in the microbiological degradation of ring A of androst-4-ene-3,17-dione.
    Sih CJ; Lee SS; Tsong YY; Wang KC
    J Biol Chem; 1966 Feb; 241(3):540-50. PubMed ID: 5908120
    [No Abstract]   [Full Text] [Related]  

  • 79. Isolation and characterization of a Nocardia-like soil-bacterium, growing on carboxanilide fungicides.
    Bachofer R; Oltmanns O; Lingens F
    Arch Mikrobiol; 1973 Mar; 90(2):141-9. PubMed ID: 4707593
    [No Abstract]   [Full Text] [Related]  

  • 80. [The oxido-reduction of the cycle A of delta-4-keto-3 steroids by Nocardia].
    Lefebvre G; Germain P; Gay R
    C R Acad Hebd Seances Acad Sci D; 1972 Jan; 274(3):449-52. PubMed ID: 4621926
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.