These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Degradation of labelled lignins and veratrylglycerol-beta-guaiacyl ether by Acinetobacter sp. Vasudevan N; Mahadevan A Ital J Biochem; 1990; 39(5):285-93. PubMed ID: 2128084 [TBL] [Abstract][Full Text] [Related]
6. Preparation and microbial decomposition of synthetic [14C]ligins. Kirk TK; Connors WJ; Bleam RD; Hackett WF; Zeikus JG Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2515-9. PubMed ID: 1058470 [TBL] [Abstract][Full Text] [Related]
7. Degradation of indulin by Candida albicans. Vasudevan N; Mahadevan A Biochem Int; 1992 Feb; 26(2):317-25. PubMed ID: 1558544 [TBL] [Abstract][Full Text] [Related]
8. Phoma herbarum, a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation. Bi R; Lawoko M; Henriksson G J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1175-82. PubMed ID: 27260523 [TBL] [Abstract][Full Text] [Related]
9. 14C-[lignin]-lignocellulose biodegradation by bacteria isolated from polluted soil. Kumar L; Rathore V; Srivastava H Indian J Exp Biol; 2001 Jun; 39(6):584-9. PubMed ID: 12562023 [TBL] [Abstract][Full Text] [Related]
10. Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation. Vahatalo AV; Salonen K; Salkinoja-Salonen M; Hatakka A Biodegradation; 1999; 10(6):415-20. PubMed ID: 11068827 [TBL] [Abstract][Full Text] [Related]
11. Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters. Duboc O; Dignac MF; Djukic I; Zehetner F; Gerzabek MH; Rumpel C Glob Chang Biol; 2014 Jul; 20(7):2272-85. PubMed ID: 24323640 [TBL] [Abstract][Full Text] [Related]
13. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Crawford RL; McCoy E; Harkin JM; Kirk TK; Obst JR Appl Microbiol; 1973 Aug; 26(2):176-84. PubMed ID: 4743871 [TBL] [Abstract][Full Text] [Related]
14. Intermediates and products of synthetic lignin (dehydrogenative polymerizate) degradation by Phlebia tremellosa. Reid ID Appl Environ Microbiol; 1991 Oct; 57(10):2834-40. PubMed ID: 1746943 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers. Ji R; Chen Z; Corvini PF; Kappler A; Brune A; Haider K; Schäffer A Chemosphere; 2005 Sep; 60(9):1169-81. PubMed ID: 16018886 [TBL] [Abstract][Full Text] [Related]
16. Short communication: Isolation of a bacterium capable of limited degradation of industrial and labelled, natural and synthetic lignins. Perestelo F; Rodríguez A; Pérez R; Carnicero A; de la Fuente G; Falcón MA World J Microbiol Biotechnol; 1996 Jan; 12(1):111-2. PubMed ID: 24415105 [TBL] [Abstract][Full Text] [Related]
17. Release of substituents from phenolic compounds during oxidative coupling reactions. Dec J; Haider K; Bollag JM Chemosphere; 2003 Jul; 52(3):549-56. PubMed ID: 12738292 [TBL] [Abstract][Full Text] [Related]
18. Demethylation of [14C]-labelled veratric acid and oxidation of methanol and formaldehyde by the white-rot fungus Phlebia radiata. Rogalski J; Hatakka A; Leonowicz A Acta Microbiol Pol; 2000; 49(3-4):207-16. PubMed ID: 11293653 [TBL] [Abstract][Full Text] [Related]
19. Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Hänninen T; Kontturi E; Vuorinen T Phytochemistry; 2011 Oct; 72(14-15):1889-95. PubMed ID: 21632083 [TBL] [Abstract][Full Text] [Related]
20. Mutualistic degradation of the lignin model compound veratrylglycerol-beta-(o-methoxyphenyl) ether by bacteria. Crawford RL Can J Microbiol; 1975 Oct; 21(10):1654-7. PubMed ID: 1201511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]