These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9074688)

  • 1. Role of wavefront curvature in propagation of cardiac impulse.
    Fast VG; Kléber AG
    Cardiovasc Res; 1997 Feb; 33(2):258-71. PubMed ID: 9074688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media.
    Kay MW; Gray RA
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):50-63. PubMed ID: 15651564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
    Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J
    Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2- and 3-dimensional computer models.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 Sep; 30(3):449-59. PubMed ID: 7585837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of heterogeneities and intercellular coupling in wave propagation in cardiac tissue.
    Steinberg BE; Glass L; Shrier A; Bub G
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1299-311. PubMed ID: 16608709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.
    Romero L; Trenor B; Ferrero JM; Starmer CF
    PLoS One; 2013; 8(11):e78328. PubMed ID: 24223791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conduction block in one-dimensional heart fibers.
    Fox JJ; Gilmour RF; Bodenschatz E
    Phys Rev Lett; 2002 Nov; 89(19):198101. PubMed ID: 12443153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.
    Weise LD; Panfilov AV
    PLoS One; 2011; 6(11):e27264. PubMed ID: 22114667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation between atrial fibrillation wavefront characteristics and accessory pathway conduction.
    Ong JJ; Cha YM; Kriett JM; Boyce K; Feld GK; Chen PS
    J Clin Invest; 1995 Nov; 96(5):2284-96. PubMed ID: 7593615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multiple site optical recording of transmembrane voltage.
    Rohr S
    J Cardiovasc Electrophysiol; 1995 Jul; 6(7):551-68. PubMed ID: 8528490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvature-Dependent Excitation Propagation in Cultured Cardiac Tissue.
    Kadota S; Kay MW; Magome N; Agladze K
    JETP Lett; 2012 Feb; 94(11):824-830. PubMed ID: 26705369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane potential properties of atrial cells at different sites of a spiral wave reentry: cellular evidence for an excitable but nonexcited core.
    Karagueuzian HS; Athill CA; Yashima M; Ikeda T; Wu TJ; Mandel WJ; Chen PS
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 2):2360-5. PubMed ID: 9825348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy.
    Kuklik P; Szumowski L; Sanders P; Zebrowski JJ
    Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral waves in a computer model of cardiac excitation.
    Abildskov JA; Lux RL
    Pacing Clin Electrophysiol; 1994 May; 17(5 Pt 1):944-52. PubMed ID: 7517529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave block formation in homogeneous excitable media following premature excitations: dependence on restitution relations.
    Comtois P; Vinet A; Nattel S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031919. PubMed ID: 16241494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of barriers on propagation of action potentials in two-dimensional cardiac tissue. A computer simulation study.
    Maglaveras N; Offner F; van Capelle FJ; Allessie MA; Sahakian AV
    J Electrocardiol; 1995 Jan; 28(1):17-31. PubMed ID: 7897334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 May; 29(5):697-707. PubMed ID: 7606760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.