These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9074999)

  • 1. Decrease in canine proximal femoral ultimate strength and stiffness due to fatigue damage.
    Hoshaw SJ; Cody DD; Saad AM; Fyhrie DP
    J Biomech; 1997 Apr; 30(4):323-9. PubMed ID: 9074999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of bone structural properties by accumulation and coalescence of microcracks.
    Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P
    Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue data analysis of canine femurs under four-point bending.
    Pidaparti RM; Akyuz U; Naick PA; Burr DB
    Biomed Mater Eng; 2000; 10(1):43-50. PubMed ID: 10950206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
    Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR;
    J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue fracture of the bilateral femoral neck in the elderly.
    Ichikawa J; Amano R; Haro H; Sato E; Koyama K; Hamada Y
    Orthopedics; 2008 Nov; 31(11):1141. PubMed ID: 19226082
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of finite element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck.
    Cheal EJ; Hipp JA; Hayes WC
    J Biomech; 1993 Mar; 26(3):251-64. PubMed ID: 8468338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
    Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV
    J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk.
    Bryan R; Nair PB; Taylor M
    J Biomech; 2009 Sep; 42(13):2171-6. PubMed ID: 19646700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive geometric factors in a standardized model of femoral neck fracture. Experimental study of cadaveric human femurs.
    Kukla C; Gaebler C; Pichl RW; Prokesch R; Heinze G; Heinz T
    Injury; 2002 Jun; 33(5):427-33. PubMed ID: 12095724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo microdamage is an indicator of susceptibility to initiation and propagation of microdamage in human femoral trabecular bone.
    Wu Z; Laneve AJ; Niebur GL
    Bone; 2013 Jul; 55(1):208-15. PubMed ID: 23459314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Finite element analysis on fracture relevance as bone defect of proximal femur].
    Zhang S; Tu CQ; Duan H; Min L; Zhou Y; Zhang SL; Jiang Y; Feng P
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2011 Mar; 42(2):273-6, 279. PubMed ID: 21500571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density.
    Pisharody S; Phillips R; Langton CM
    Proc Inst Mech Eng H; 2008 Apr; 222(3):367-75. PubMed ID: 18491705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical strength of the femur following resurfacing and conventional total hip replacement procedures.
    Markolf KL; Amstutz HC
    Clin Orthop Relat Res; 1980; (147):170-80. PubMed ID: 7371289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region-specific sex-dependent pattern of age-related changes of proximal femoral cancellous bone and its implications on differential bone fragility.
    Djuric M; Djonic D; Milovanovic P; Nikolic S; Marshall R; Marinkovic J; Hahn M
    Calcif Tissue Int; 2010 Mar; 86(3):192-201. PubMed ID: 20012269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture of the human femoral neck: effect of density of the cancellous core.
    Mizrahi J; Margulies JY; Leichter I; Deutsch D
    J Biomed Eng; 1984 Jan; 6(1):56-62. PubMed ID: 6694369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does microdamage accumulation affect the mechanical properties of bone?
    Burr DB; Turner CH; Naick P; Forwood MR; Ambrosius W; Hasan MS; Pidaparti R
    J Biomech; 1998 Apr; 31(4):337-45. PubMed ID: 9672087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study.
    Szulc P; Duboeuf F; Schott AM; Dargent-Molina P; Meunier PJ; Delmas PD
    Osteoporos Int; 2006 Feb; 17(2):231-6. PubMed ID: 15983728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.