These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9075176)

  • 1. Differential activity of the pars recta and pars oblique in fundamental frequency control.
    McHenry MA; Kuna ST; Minton JT; Vanoye CR; Calhoun K
    J Voice; 1997 Mar; 11(1):48-58. PubMed ID: 9075176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the pars recta and pars oblique of cricothyroid muscle in speech production.
    Hong KH; Kim HK; Kim YH
    J Voice; 2001 Dec; 15(4):512-8. PubMed ID: 11792027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional differences between the two bellies of the cricothyroid muscle.
    Hong KH; Ye M; Kim YM; Kevorkian KF; Kreiman J; Berke GS
    Otolaryngol Head Neck Surg; 1998 May; 118(5):714-22. PubMed ID: 9591880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetanic response of the cricothyroid muscle.
    Alipour-Haghighi F; Perlman AL; Titze IR
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):626-31. PubMed ID: 1872512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laryngeal muscle responses to mechanical displacement of the thyroid cartilage in humans.
    Loucks TM; Poletto CJ; Saxon KG; Ludlow CL
    J Appl Physiol (1985); 2005 Sep; 99(3):922-30. PubMed ID: 15932961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active and passive characteristics of the canine cricothyroid muscles.
    Alipour F; Titze I
    J Voice; 1999 Mar; 13(1):1-10. PubMed ID: 10223670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of the physiological properties of the vocalis and cricothyroid muscles.
    Perlman AL; Alipour-Haghighi F
    Acta Otolaryngol; 1988; 105(3-4):372-8. PubMed ID: 3389123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures.
    Poletto CJ; Verdun LP; Strominger R; Ludlow CL
    J Appl Physiol (1985); 2004 Sep; 97(3):858-66. PubMed ID: 15133000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activity of the cricothyroid muscle and the intrinsic fundamental frequency in Danish vowels.
    Dyhr N
    Phonetica; 1990; 47(3-4):141-54. PubMed ID: 2130379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time relations between cricothyroid muscle activity and the voice fundamental frequency (F0) during sinusoidal modulations of F0.
    Sapir S; McClean MD; Luschei ES
    J Acoust Soc Am; 1984 May; 75(5):1639-41. PubMed ID: 6736427
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.
    Jaffe DM; Solomon NP; Robinson RA; Hoffman HT; Luschei ES
    Otolaryngol Head Neck Surg; 1998 May; 118(5):655-62. PubMed ID: 9591865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic activity of strap and cricothyroid muscles in pitch change.
    Roubeau B; Chevrie-Muller C; Lacau Saint Guily J
    Acta Otolaryngol; 1997 May; 117(3):459-64. PubMed ID: 9199535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in voice fundamental frequency following discharge of single motor units in cricothyroid and thyroarytenoid muscles.
    Larson CR; Kempster GB; Kistler MK
    J Speech Hear Res; 1987 Dec; 30(4):552-8. PubMed ID: 3695447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of fundamental frequency by laryngeal muscles during vibrato.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR
    J Voice; 1994 Sep; 8(3):224-9. PubMed ID: 7987424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The three bellies of the canine cricothyroid muscle.
    Zaretsky LS; Sanders I
    Ann Otol Rhinol Laryngol Suppl; 1992 Feb; 156():3-16. PubMed ID: 1739268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Laryngeal Muscle Activity During Subvocalization.
    Helou LB; Welch B; Wang W; Rosen CA; Verdolini Abbott K
    J Voice; 2023 May; 37(3):426-432. PubMed ID: 33612369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodology for intra-operative recording of the corticobulbar motor evoked potentials from cricothyroid muscles.
    Deletis V; Fernández-Conejero I; Ulkatan S; Rogić M; Carbó EL; Hiltzik D
    Clin Neurophysiol; 2011 Sep; 122(9):1883-9. PubMed ID: 21440494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of thyroarytenoid muscle responses during repeated air pressure stimulation of the laryngeal mucosa in awake humans.
    Kearney PR; Poletto CJ; Mann EA; Ludlow CL
    Ann Otol Rhinol Laryngol; 2005 Apr; 114(4):264-70. PubMed ID: 15895780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of laryngeal EMG in normal subjects.
    Lindestad PA; Fritzell B; Persson A
    Acta Otolaryngol; 1991; 111(6):1146-52. PubMed ID: 1763638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.