BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9075202)

  • 1. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals.
    Tyurin VA; Carta G; Tyurina YY; Banni S; Day BW; Corongiu FP; Kagan VE
    Lipids; 1997 Feb; 32(2):131-42. PubMed ID: 9075202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells.
    Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Li R; Martin I; Quinn PJ; Tyurin VA; Tyurina YY; Yalowich JC
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):72-84. PubMed ID: 12595076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloperoxidase-catalyzed phenoxyl radicals of vitamin E homologue, 2,2,5,7,8-pentamethyl- 6-hydroxychromane, do not induce oxidative stress in live HL-60 cells.
    Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Tyurina YY; Yalowich JC
    Biochem Biophys Res Commun; 2000 Apr; 270(3):1086-92. PubMed ID: 10772954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase.
    Kagan VE; Kuzmenko AI; Tyurina YY; Shvedova AA; Matsura T; Yalowich JC
    Cancer Res; 2001 Nov; 61(21):7777-84. PubMed ID: 11691792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants.
    Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE
    Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct oxidation of polyunsaturated cis-parinaric fatty acid by phenoxyl radicals generated by peroxidase/H2O2 in model systems and in HL-60 cells.
    Ritov VB; Menshikova EV; Goldman R; Kagan VE
    Toxicol Lett; 1996 Oct; 87(2-3):121-9. PubMed ID: 8914620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells.
    Goldman R; Claycamp GH; Sweetland MA; Sedlov AV; Tyurin VA; Kisin ER; Tyurina YY; Ritov VB; Wenger SL; Grant SG; Kagan VE
    Free Radic Biol Med; 1999 Nov; 27(9-10):1050-63. PubMed ID: 10569638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA
    Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme.
    Goldman R; Tsyrlov IB; Grogan J; Kagan VE
    Biochemistry; 1997 Mar; 36(11):3186-92. PubMed ID: 9115995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants?
    Modriansky M; Tyurina YY; Tyurin VA; Matsura T; Shvedova AA; Yalowich JC; Kagan VE
    Toxicology; 2002 Aug; 177(1):105-17. PubMed ID: 12126799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical.
    Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE
    Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and characterization of the electron paramagnetic resonance-silent glutathionyl-5,5-dimethyl-1-pyrroline N-oxide adduct derived from redox cycling of phenoxyl radicals in model systems and HL-60 cells.
    Stoyanovosky DA; Goldman R; Jonnalagadda SS; Day BW; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1996 Jun; 330(1):3-11. PubMed ID: 8651701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes.
    Shvedova AA; Kommineni C; Jeffries BA; Castranova V; Tyurina YY; Tyurin VA; Serbinova EA; Fabisiak JP; Kagan VE
    J Invest Dermatol; 2000 Feb; 114(2):354-64. PubMed ID: 10651998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant activity of carotenoids: an electron-spin resonance study on beta-carotene and lutein interaction with free radicals generated in a chemical system.
    Iannone A; Rota C; Bergamini S; Tomasi A; Canfield LM
    J Biochem Mol Toxicol; 1998; 12(5):299-304. PubMed ID: 9664236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach.
    Kagan VE; Yalowich JC; Borisenko GG; Tyurina YY; Tyurin VA; Thampatty P; Fabisiak JP
    Mol Pharmacol; 1999 Sep; 56(3):494-506. PubMed ID: 10462537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin.
    Goldman R; Stoyanovsky DA; Day BW; Kagan VE
    Biochemistry; 1995 Apr; 34(14):4765-72. PubMed ID: 7718583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants.
    Sakihama Y; Cohen MF; Grace SC; Yamasaki H
    Toxicology; 2002 Aug; 177(1):67-80. PubMed ID: 12126796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells.
    Cuddihy SL; Parker A; Harwood DT; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2008 Apr; 44(8):1637-44. PubMed ID: 18291121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidase-catalyzed pro- versus antioxidant effects of 4-hydroxytamoxifen: enzyme specificity and biochemical sequelae.
    Day BW; Tyurin VA; Tyurina YY; Liu M; Facey JA; Carta G; Kisin ER; Dubey RK; Kagan VE
    Chem Res Toxicol; 1999 Jan; 12(1):28-37. PubMed ID: 9894015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.