These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9075210)

  • 1. Phospholipid fatty acid composition in type I and type II rat muscle.
    Blackard WG; Li J; Clore JN; Rizzo WB
    Lipids; 1997 Feb; 32(2):193-8. PubMed ID: 9075210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary fatty acid profile influences the composition of skeletal muscle phospholipids in rats.
    Ayre KJ; Hulbert AJ
    J Nutr; 1996 Mar; 126(3):653-62. PubMed ID: 8598550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats.
    Beha A; Juretschke HP; Kuhlmann J; Neumann-Haefelin C; Belz U; Gerl M; Kramer W; Roden M; Herling AW
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E989-97. PubMed ID: 16380389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition.
    Stark KD; Lim SY; Salem N
    Lipids Health Dis; 2007 Apr; 6():13. PubMed ID: 17459159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial efficiency in rat skeletal muscle: influence of respiration rate, substrate and muscle type.
    Mogensen M; Sahlin K
    Acta Physiol Scand; 2005 Nov; 185(3):229-36. PubMed ID: 16218928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expression of NFATc1 in adult rat skeletal muscle fibres.
    Mutungi G
    Exp Physiol; 2008 Mar; 93(3):399-406. PubMed ID: 17965140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of acute streptozotocin diabetes on fatty acid content and composition in different lipid fractions of rat skeletal muscle.
    Nawrocki A; Górska M; Zendzian-Piotrowska M; Górski J
    Horm Metab Res; 1999 Apr; 31(4):252-6. PubMed ID: 10333079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis.
    Komiya Y; Sawano S; Mashima D; Ichitsubo R; Nakamura M; Tatsumi R; Ikeuchi Y; Mizunoya W
    J Muscle Res Cell Motil; 2017 Apr; 38(2):163-173. PubMed ID: 28281032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats.
    Ayre KJ; Hulbert AJ
    J Appl Physiol (1985); 1996 Feb; 80(2):464-71. PubMed ID: 8929585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of relative protein contents by Western blotting: comparison of three members of the dystrophin-glycoprotein complex in slow and fast rat skeletal muscle.
    Chopard A; Pons F; Charpiot P; Marini JF
    Electrophoresis; 2000 Feb; 21(3):517-22. PubMed ID: 10726751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and biochemical alterations of skeletal muscles from the genetically obese (ob/ob) mouse.
    Kemp JG; Blazev R; Stephenson DG; Stephenson GM
    Int J Obes (Lond); 2009 Aug; 33(8):831-41. PubMed ID: 19528970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fructose and troglitazone on phospholipid fatty acid composition in rat skeletal muscle.
    Clore JN; Li L; Rizzo WB
    Lipids; 2000 Nov; 35(11):1281-7. PubMed ID: 11132187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue.
    Grichko VP; Heywood-Cooksey A; Kidd KR; Fitts RH
    J Appl Physiol (1985); 2000 Feb; 88(2):473-8. PubMed ID: 10658013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox modulation of maximum force production of fast-and slow-twitch skeletal muscles of rats and mice.
    Plant DR; Gregorevic P; Williams DA; Lynch GS
    J Appl Physiol (1985); 2001 Mar; 90(3):832-8. PubMed ID: 11181590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats.
    Higashiura K; Ura N; Takada T; Li Y; Torii T; Togashi N; Takada M; Takizawa H; Shimamoto K
    Am J Hypertens; 2000 Mar; 13(3):290-7. PubMed ID: 10777034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle type comparison of subsarcolemmal mitochondrial membrane phospholipid fatty acid composition in rat.
    Stefanyk LE; Coverdale N; Roy BD; Peters SJ; LeBlanc PJ
    J Membr Biol; 2010 Apr; 234(3):207-15. PubMed ID: 20336283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth hormone receptor expression in atrophying muscle fibers of rats.
    Casse AH; Desplanches D; Mayet-Sornay MH; Raccurt M; Jegou S; Morel G
    Endocrinology; 2003 Aug; 144(8):3692-7. PubMed ID: 12865352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic wheel running on the fatty acid composition of phospholipids and triacylglycerols in rat serum, skeletal muscle and heart.
    Nikolaidis MG; Petridou A; Matsakas A; Schulz T; Michna H; Mougios V
    Acta Physiol Scand; 2004 Jun; 181(2):199-208. PubMed ID: 15180792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial phospholipids of rat skeletal muscle are less polyunsaturated than whole tissue phospholipids: implications for protection against oxidative stress.
    Tsalouhidou S; Argyrou C; Theofilidis G; Karaoglanidis D; Orfanidou E; Nikolaidis MG; Petridou A; Mougios V
    J Anim Sci; 2006 Oct; 84(10):2818-25. PubMed ID: 16971584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle.
    Blachnio-Zabielska A; Baranowski M; Zabielski P; Gorski J
    J Cell Physiol; 2010 Nov; 225(3):786-91. PubMed ID: 20568228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.