These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 907549)

  • 1. [Tissue compatibility of bone cement with and without barium sulfate (author's transl)].
    Linder L
    Arch Orthop Unfallchir; 1977 Aug; 89(2):179-85. PubMed ID: 907549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity.
    Acarturk O; Lehmicke M; Aberman H; Toms D; Hollinger JO; Fulmer M
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):56-62. PubMed ID: 18098201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osseous penetration rate into implants pretreated with bone cement.
    Albrektsson T
    Arch Orthop Trauma Surg (1978); 1984; 102(3):141-7. PubMed ID: 6703869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infection adjacent to titanium and bone cement implants: an experimental study in rabbits.
    Sanzén L; Linder L
    Biomaterials; 1995 Nov; 16(16):1273-7. PubMed ID: 8589199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal torque for bone-cement and titanium screws implanted in rabbits.
    Morberg P; Albrektsson T
    Acta Orthop Scand; 1991 Dec; 62(6):554-6. PubMed ID: 1767647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biological effect of bariumsulfate as contrast material in bone cement. An animal study on rabbit femora (author's transl)].
    Rudigier J; Draenert K; Grünert A; Ritter G; Krieg H
    Arch Orthop Unfallchir; 1976 Nov; 86(3):279-90. PubMed ID: 1008728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo histologic and biomechanical characterization of a biodegradable particulate composite bone cement.
    Gerhart TN; Renshaw AA; Miller RL; Noecker RJ; Hayes WC
    J Biomed Mater Res; 1989 Jan; 23(1):1-16. PubMed ID: 2708400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Alterations of the physical properties of so-called bone cements after admixing of foreign incredients (author's transl)].
    Grünert A; Ritter G
    Arch Orthop Unfallchir; 1974; 78(4):336-42. PubMed ID: 4420153
    [No Abstract]   [Full Text] [Related]  

  • 10. No biological advantage with a low temperature curing versus a conventional bone cement: an experimental, mechanical and histomorphometrical study in the rabbit tibia.
    Morberg P; Johansson CB; Malchau H
    J Mater Sci Mater Med; 1999 Jun; 10(6):329-31. PubMed ID: 15348133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in the density of bone cement after centrifugation.
    Skinner HB; Murray WR
    Clin Orthop Relat Res; 1986 Jun; (207):263-9. PubMed ID: 3720095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Evaluation of Cell Compatibility of Dental Cements Used with Titanium Implant Components.
    Marvin JC; Gallegos SI; Parsaei S; Rodrigues DC
    J Prosthodont; 2019 Feb; 28(2):e705-e712. PubMed ID: 29522263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive and bone-bonding strength of hydroxyapatite thermal decomposition product implanted in the femur of rabbit as a bioactive ceramic bone cement.
    Takahashi A; Koshino T
    Biomaterials; 1995 Aug; 16(12):937-43. PubMed ID: 8562783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of barium sulphate from acrylic bone cements. Use of two iodine-containing monomers.
    Artola A; Gurruchaga M; Vázquez B; San Román J; Goñi I
    Biomaterials; 2003 Oct; 24(22):4071-80. PubMed ID: 12834603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of segmental bone defects using bioactive bone cement: comparison with PMMA bone cement.
    Okada Y; Kawanabe K; Fujita H; Nishio K; Nakamura T
    J Biomed Mater Res; 1999 Dec; 47(3):353-9. PubMed ID: 10487886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste.
    Kurashina K; Kurita H; Hirano M; Kotani A; Klein CP; de Groot K
    Biomaterials; 1997 Apr; 18(7):539-43. PubMed ID: 9105593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of peri-implant infrabony defects using PerioGlas: a pilot study in rabbits.
    Johnson MW; Sullivan SM; Rohrer M; Collier M
    Int J Oral Maxillofac Implants; 1997; 12(6):835-9. PubMed ID: 9425765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric ceramic implants: in vivo results.
    Park JB; Kelly BJ; Kenner GH; von Recum AF; Grether MF; Coffeen WW
    J Biomed Mater Res; 1981 Jan; 15(1):103-10. PubMed ID: 7348700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of barium sulfate on the polymerization temperature and shear strength of surgical simplex P.
    Combs SP; Greenwald AS
    Clin Orthop Relat Res; 1979; (145):287-91. PubMed ID: 535284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.