These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9076889)

  • 1. Construction of local vertebral coordinate systems using a digitizing probe. Technical note.
    Crawford NR; Dickman CA
    Spine (Phila Pa 1976); 1997 Mar; 22(5):559-63. PubMed ID: 9076889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-guided derivation of lumbar vertebral kinematics in vivo reveals the difference between external marker-defined and internal segmental rotations.
    Zhang X; Xiong J
    J Biomech; 2003 Jan; 36(1):9-17. PubMed ID: 12485634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics.
    Bifulco P; Cesarelli M; Allen R; Sansone M; Bracale M
    Med Biol Eng Comput; 2001 Jan; 39(1):65-75. PubMed ID: 11214275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of vertebral kinematics using noninvasive image matching method-validation and application.
    Wang S; Passias P; Li G; Li G; Wood K
    Spine (Phila Pa 1976); 2008 May; 33(11):E355-61. PubMed ID: 18469683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive approach towards the in vivo estimation of 3D inter-vertebral movements: methods and preliminary results.
    Cerveri P; Pedotti A; Ferrigno G
    Med Eng Phys; 2004 Dec; 26(10):841-53. PubMed ID: 15567700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebral axial rotation measurement method.
    Chi WM; Cheng CW; Yeh WC; Chuang SC; Chang TS; Chen JH
    Comput Methods Programs Biomed; 2006 Jan; 81(1):8-17. PubMed ID: 16303206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of 3D spinal kinematics without defining a local vertebral coordinate system.
    Faber MJ; Schamhardt HC; van Weeren PR
    J Biomech; 1999 Dec; 32(12):1355-8. PubMed ID: 10569715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time tracking of vertebral body movement with implantable reference microsensors.
    Mularski S; Picht T; Kuehn B; Kombos T; Brock M; Suess O
    Comput Aided Surg; 2006 May; 11(3):137-46. PubMed ID: 16829507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of 2 methods of measuring spine angular kinematics during dynamic flexion movements: skin-mounted markers compared with markers affixed to rigid bodies.
    Howarth SJ
    J Manipulative Physiol Ther; 2014; 37(9):688-95. PubMed ID: 25455835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced template matching method for estimation of intervertebral kinematics of lumbar spine.
    Cerciello T; Romano M; Bifulco P; Cesarelli M; Allen R
    Med Eng Phys; 2011 Dec; 33(10):1293-302. PubMed ID: 21764624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional lumbar spine vertebral motion during running using indwelling bone pins.
    MacWilliams BA; Rozumalski A; Swanson AN; Wervey R; Dykes DC; Novacheck TF; Schwartz MH
    Spine (Phila Pa 1976); 2014 Dec; 39(26):E1560-5. PubMed ID: 25341976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a vertebral endplate 3-D reconstruction technique.
    Huynh TN; Dansereau J; Maurais G
    IEEE Trans Med Imaging; 1997 Oct; 16(5):689-96. PubMed ID: 9368125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method to calculate relative spinal motion without digitization.
    Wu C; Mehbod AA; Erkan S; Transfeldt EE
    Spine J; 2009 Feb; 9(2):182-9. PubMed ID: 18790682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of marker placements in the back for opto-electronic motion analysis.
    Chockalingam N; Dangerfield PH; Giakas G; Cochrane T
    Stud Health Technol Inform; 2002; 88():105-9. PubMed ID: 15456012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional measurement of intervertebral kinematics in vitro using optical motion analysis.
    Holt CA; Evans SL; Dillon D; Ahuja S
    Proc Inst Mech Eng H; 2005 Nov; 219(6):393-9. PubMed ID: 16312098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust method for automatic identification of femoral landmarks, axes, planes and bone coordinate systems using surface models.
    Fischer MCM; Grothues SAGA; Habor J; de la Fuente M; Radermacher K
    Sci Rep; 2020 Nov; 10(1):20859. PubMed ID: 33257714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments.
    Busscher I; van Dieën JH; Kingma I; van der Veen AJ; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2858-64. PubMed ID: 20010393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.
    Kadoury S; Cheriet F; Labelle H
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1422-35. PubMed ID: 19336299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Customized 3D radiographic reconstruction of the human pelvis].
    Gauvin C; Dansereau J; Petit Y; De Guise JA; Labelle H
    Ann Chir; 1998; 52(8):744-51. PubMed ID: 9846424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.