These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 907699)

  • 1. FAD-dependent malate dehydrogenase from Mycobacterium sp. strain Takeo : a possible role of phospholipid.
    Imai T; Tobari J
    Biochem Biophys Res Commun; 1977 Sep; 78(2):498-505. PubMed ID: 907699
    [No Abstract]   [Full Text] [Related]  

  • 2. FAD-dependent malate dehydrogenase, a phospholipid-requiring enzyme from Mycobacterium sp. strain Takeo. Purification and some properties.
    Imai T
    Biochim Biophys Acta; 1978 Mar; 523(1):37-46. PubMed ID: 629992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAD-dependent malate dehydrogenase from Mycobacterium smegmatis: activation of the lipid-depleted inactive enzyme by a phospholipid analogue, di (triethyleneglycoltetradecylether) phosphate.
    Imai T; Murata T
    Biochem Int; 1989 Dec; 19(6):1277-86. PubMed ID: 2635863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement of flavin adenine dinucleotide and phospholipid for the activity of malate dehydrogenase from Mycobacterium avium.
    Tobari J
    Biochem Biophys Res Commun; 1964 Feb; 15(1):50-4. PubMed ID: 5835376
    [No Abstract]   [Full Text] [Related]  

  • 5. FAD-dependent malate dehydrogenase from Mycobacterium smegmatis: activation of the lipid-depleted enzyme by incorporation into cardiolipin liposome.
    Imai T; Hosoda N; Tadano H; Tobari J
    Biochem Biophys Res Commun; 1985 Nov; 133(1):1-7. PubMed ID: 3000371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane electron transfer in an enzyme-phospholipid complex.
    Imai K; Brodie AF
    Biochem Biophys Res Commun; 1974 Feb; 56(3):822-7. PubMed ID: 4826880
    [No Abstract]   [Full Text] [Related]  

  • 7. [Utilization of malate by various Mycobacteria. Malate-vitamin K 1 reductase].
    Andrejew A; Orfanelli MT; Desbordes J
    C R Acad Hebd Seances Acad Sci D; 1972 Feb; 274(6):943-6. PubMed ID: 4622884
    [No Abstract]   [Full Text] [Related]  

  • 8. Interaction of mitochondrial malate dehydrogenase monomer with phospholipid vesicles.
    Webster KA; Patel HV; Freeman KB; Papahadjopoulos D
    Biochem J; 1979 Jan; 178(1):147-58. PubMed ID: 435273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacterium smegmatis malate dehydrogenase: activation of the lipid-depleted enzyme by anionic phospholipids and phosphatidylethanolamine.
    Imai T; Kageyama Y; Tobari J
    Biochim Biophys Acta; 1995 Jan; 1246(2):189-96. PubMed ID: 7819287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cofactor requirements of the L-malate dehydrogenase of Pseudomonas ovalis Chester.
    Phizackerley PJ; Francis MJ
    Biochem J; 1966 Nov; 101(2):524-35. PubMed ID: 5966284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARTICIPATION OF FLAVIN-ADENINE DINUCLEOTIDE IN THE ACTIVITY OF MALATE DEHYDROGENASE FROM MYCOBACTERIUM AVIUM.
    KIMURA T; TOBARI J
    Biochim Biophys Acta; 1963 Jul; 73():399-405. PubMed ID: 14068518
    [No Abstract]   [Full Text] [Related]  

  • 12. Variations in the pathways of malate oxidation and phosphorylation in different species of Mycobacteria.
    Prasada Reddy TL; Suryanarayana Murthy P; Venkitasubramanian TA
    Biochim Biophys Acta; 1975 Feb; 376(2):210-8. PubMed ID: 234747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in lipid constituents during growth of Mycobacterium smegmatis CDC 46 and Mycobacterium phlei ATCC 354.
    Dhariwal KR; Chander A; Venkitasubramanian TA
    Microbios; 1976; 16(65-66):169-82. PubMed ID: 196159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site of action of nonheme iron in the malate (flavine adenine dinucleotide) pathway of Mycobacterium phlei.
    Tyagi AK; Reddy TL; Venkitasubramanian TA
    Can J Microbiol; 1976 Jul; 22(7):1054-7. PubMed ID: 963613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MALATE-VITAMIN K REDUCTASE, A PHOSPHOLIPID-REQUIRING ENZYME.
    ASANO A; KANESHIRO T; BRODIE AF
    J Biol Chem; 1965 Feb; 240():895-905. PubMed ID: 14275151
    [No Abstract]   [Full Text] [Related]  

  • 16. [Steroid-transforming enzymes from microorganisms. X. Enrichment of a 4-en-3-oxosteroid-5 alpha-reductase from Mycobacterium smegmatis as well as separation and enrichment of the apoenzyme by means of affinity chromatography].
    Atrat P; Deppmeyer V; Groh H; Hörhold C
    Z Allg Mikrobiol; 1979; 19(6):375-9. PubMed ID: 543159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.
    Risse B; Stempfer G; Rudolph R; Möllering H; Jaenicke R
    Protein Sci; 1992 Dec; 1(12):1699-709. PubMed ID: 1304899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the molecular complex of flavins. V. Possible role of free sulfhydryl group in apoprotein of glucose oxidase and 6-amino group in adenine moiety of FAD.
    Tsuge H; Mitsuda H
    J Biochem; 1974 Feb; 75(2):399-406. PubMed ID: 4837449
    [No Abstract]   [Full Text] [Related]  

  • 19. The interaction of glutamate dehydrogenase and malate dehydrogenase with phospholipid membranes.
    Dodd GH
    Eur J Biochem; 1973 Mar; 33(3):418-27. PubMed ID: 4735074
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group.
    Miyawaki O; Wingard LB
    Biochim Biophys Acta; 1985 Jan; 838(1):60-8. PubMed ID: 3967047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.