BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 907809)

  • 1. beta-structures of alternating polypeptides and their possible role in chemical evolution.
    Brack A
    Biosystems; 1977 Sep; 9(2-3):99-103. PubMed ID: 907809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and beta-conformation of copolypeptides with alternating hydrophilic and hydrophobic residues.
    Brack A; Caille A
    Int J Pept Protein Res; 1978 Feb; 11(2):128-39. PubMed ID: 640771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-structures of polypeptides with L-and D-residues. Part I. Synthesis and conformational studies.
    Brack A; Spach G
    J Mol Evol; 1979 Jun; 13(1):35-46. PubMed ID: 458871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and conformational studies of poly(L-lysine) based branched polypeptides with Ser and Glu/Leu in the side chains.
    Mezö G; Reményi J; Kajtár J; Barna K; Gaál D; Hudecz F
    J Control Release; 2000 Jan; 63(1-2):81-95. PubMed ID: 10640582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of beta,beta-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism.
    Brahms S; Brahms J; Spach G; Brack A
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3208-12. PubMed ID: 269385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta structures of alternating polypeptides and their possible prebiotic significance.
    Brack A; Orgel LE
    Nature; 1975 Jul; 256(5516):383-7. PubMed ID: 238134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of DNA with poly(L-Lys-L-Ala-Gly) and poly(L-Lys-L-Ala-L-Pro). Circular dichroism and thermal denaturation studies.
    Schwartz AM; Fasman GD
    Biochemistry; 1977 May; 16(10):2287-99. PubMed ID: 558795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Design and synthesis of peptides capable of specific binding to DNA].
    Grokhovskiĭ SL; Surovaia AN; Sidorova NIu; Votavova H; Sponar J
    Mol Biol (Mosk); 1988; 22(5):1315-34. PubMed ID: 2851717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.
    Mezö G; Hudecz F; Kajtár J; Szókán G; Szekerke M
    Biopolymers; 1989 Oct; 28(10):1801-26. PubMed ID: 2597733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.
    Goyal B; Srivastava KR; Durani S
    J Pept Sci; 2017 Jun; 23(6):431-437. PubMed ID: 28425159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine and beta-branched residues support and modulate peptide helicity in membrane environments.
    Li SC; Deber CM
    FEBS Lett; 1992 Oct; 311(3):217-20. PubMed ID: 1397317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational studies on sequential polypeptides Part VI. Structural investigations on (Pro-Leu-Gly)10, (Pro-Leu-Gly)n and (Leu-Pro-Gly)n.
    Scatturin A; Tamburro AM; Del Pra A; Bordignon E
    Int J Pept Protein Res; 1975; 7(6):425-35. PubMed ID: 1201907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Number and placement of hydrophobic residues in a longitudinal strip governs helix formation of peptides in the presence of lipid vesicles.
    Lu S; Ciardelli T; Reyes VE; Humphreys RE
    J Biol Chem; 1991 Jun; 266(16):10054-7. PubMed ID: 2037563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary and tertiary structure of the principal human adenylate kinase.
    Von Zabern I; Wittmann-Liebold B; Untucht-Grau R; Schirmer RH; Pai EF
    Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatic models. Interactions between DNA and polypeptides containing L-lysine L-valine: circular dichroism and thermal denaturation studies.
    Mandel R; Fasman GD
    Biochemistry; 1976 Jul; 15(14):3122-30. PubMed ID: 952847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin models. The ionic strength dependence of model histone-DNA interactions: circular dichroism studies of lysine-leucine polypeptide-DNA complexes.
    Ong EC; Snell C; Fasman GD
    Biochemistry; 1976 Feb; 15(3):468-77. PubMed ID: 1252405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of DNA with lysine-rich polypeptides and proteins. The influence of polypeptide composition and secondary structure.
    Azorin F; Vives J; Campos JL; Jordán A; Lloveras J; Puigjaner L; Subirana JA; Mayer R; Brack A
    J Mol Biol; 1985 Sep; 185(2):371-87. PubMed ID: 3932657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary peptide bond containing-oligo(Leu)s. Conformational studies in solution of oligo (L-leucine)s with L-proline residue and glycyl-N-(2, 4-dimethoxybenzyl)-L-leucine sequence.
    Narita M; Ishikawa K; Nakano H; Isokawa S
    Int J Pept Protein Res; 1984 Jul; 24(1):14-24. PubMed ID: 6480211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational transitions of leucine-containing isomeric sequential basic polytripeptides.
    Stokrová S; Bohdanecký M; Bláha K; Sponar J
    Biopolymers; 1989 Oct; 28(10):1731-44. PubMed ID: 2597727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.