BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 9078273)

  • 1. Structure of active chromatin: isolation and characterization of transcriptionally active chromatin from rat liver.
    Tikoo K; Gupta S; Hamid QA; Shah V; Chatterjee B; Ali Z
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):273-9. PubMed ID: 9078273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting nucleosome structure in transcriptionally active chromatin. Histone acetylation, nascent RNA and inhibitors of RNA synthesis.
    Boffa LC; Walker J; Chen TA; Sterner R; Mariani MR; Allfrey VG
    Eur J Biochem; 1990 Dec; 194(3):811-23. PubMed ID: 1702716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of active chromatin: higher-order folding of transcriptionally active chromatin in control and hypothyroid rat liver.
    Tikoo K; Hamid QA; Ali Z
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):289-96. PubMed ID: 9078275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of poly(adenosine diphosphate ribosylated) nucleosomes with transcriptionally active and inactive regions of chromatin.
    Hough CJ; Smulson ME
    Biochemistry; 1984 Oct; 23(21):5016-23. PubMed ID: 6498173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei.
    Sanders MM
    J Cell Biol; 1978 Oct; 79(1):97-109. PubMed ID: 701381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.
    Spiker S; Murray MG; Thompson WF
    Proc Natl Acad Sci U S A; 1983 Feb; 80(3):815-9. PubMed ID: 6219388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of thyroid hormone receptors with chromatin.
    Jump DB; Oppenheimer JH
    Mol Cell Biochem; 1983; 55(2):159-76. PubMed ID: 6314118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical composition of nucleosomes among domains of calf thymus chromatin differing in micrococcal nuclease accessibility and solubility properties.
    Davie JR; Saunders CA
    J Biol Chem; 1981 Dec; 256(23):12574-80. PubMed ID: 6457837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase I and DNase II: possible location of HMG-T in the spacer region between core nucleosomes.
    Levy W B; Wong NC; Dixon GH
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2810-4. PubMed ID: 268631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The small chromatin fragments released by micrococcal nuclease from hepatoma tissue cultured cell nuclei are strongly enriched in coding DNA sequences and are related to an actively transcribed single-stranded DNA fraction.
    Kitzis A; Leibovitch SA; Leibovitch MP; Tichonicky L; Harel J; Kruh J
    Biochim Biophys Acta; 1982 Apr; 697(1):60-70. PubMed ID: 6896287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the sensitivity of chromatin to exogenous nucleases: implications for the apparent increased sensitivity of transcriptionally active genes.
    Walker PR; Sikorska M
    Biochemistry; 1986 Jul; 25(13):3839-45. PubMed ID: 3091066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassociation of histone H1 to H1-depleted polynucleosomes.
    Klingholz R; Strätling WH
    J Biol Chem; 1982 Nov; 257(21):13101-7. PubMed ID: 7130195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of histone H1 and decondensation of nuclear chromatin with various Mg-dependent organization levels under treatment with polyglutamic acid and distamycin.
    Prusov AN; Smirnova TA; Kolomijtseva GY
    Biochemistry (Mosc); 2015 Mar; 80(3):356-65. PubMed ID: 25761689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid nucleoprotein particles containing a subset of male and female histone variants form during male pronucleus formation in sea urchins.
    Imschenetzky M; Oliver MI; Gutiérrez S; Morín V; Garrido C; Bustos A; Puchi M
    J Cell Biochem; 1996 Dec; 63(4):385-94. PubMed ID: 8978455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of thyrotropin on the phosphorylation of histones and nonhistone phosphoproteins in micrococcal nuclease-sensitive and resistant thyroid chromatin.
    Cooper E; Spaulding SW
    Endocrinology; 1983 May; 112(5):1816-22. PubMed ID: 6219868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Internucleosome interaction: detection of dinucleosome fragmentation of chromatin by micrococcal nuclease. Analysis of the products of cleavage of chromatin from rat liver nuclei and L cells by micrococcal nuclease].
    Kir'ianov GI; Smirnova TA; Manamsh'ian TA; Khodosovskaia AM
    Biokhimiia; 1987 Nov; 52(11):1855-66. PubMed ID: 3440114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of transcriptionally-active chromatin subunits.
    Gottesfeld JM; Butler PJ
    Nucleic Acids Res; 1977 Sep; 4(9):3155-73. PubMed ID: 909802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of the thyroid hormone receptor with rat liver chromatin.
    Jump DB; Seelig S; Schwartz HL; Oppenheimer JH
    Biochemistry; 1981 Nov; 20(24):6781-9. PubMed ID: 6274379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the localization of high mobility group proteins in chromatin.
    Levy WB; Dixon GH
    Can J Biochem; 1978 Jun; 56(6):480-91. PubMed ID: 667694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chromosomal phosphoprotein is preferentially released by mild micrococcal-nuclease digestion.
    Liew CC; Halikowski MJ; Zhao MS
    Biochem J; 1984 Jun; 220(2):539-45. PubMed ID: 6743285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.