These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 9078283)

  • 1. Enzyme-substrate interaction in the catalytic triad of serine proteases: increase in the pKa of Asp102.
    Neuvonen H
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):351-2. PubMed ID: 9078283
    [No Abstract]   [Full Text] [Related]  

  • 2. Low-barrier hydrogen bonding in molecular complexes analogous to histidine and aspartate in the catalytic triad of serine proteases.
    Tobin JB; Whitt SA; Cassidy CS; Frey PA
    Biochemistry; 1995 May; 34(21):6919-24. PubMed ID: 7766600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic role of the active site aspartic acid in serine proteases.
    Craik CS; Roczniak S; Largman C; Rutter WJ
    Science; 1987 Aug; 237(4817):909-13. PubMed ID: 3303334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-barrier hydrogen bond in the catalytic triad of serine proteases.
    Frey PA; Whitt SA; Tobin JB
    Science; 1994 Jun; 264(5167):1927-30. PubMed ID: 7661899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment.
    Ash EL; Sudmeier JL; De Fabo EC; Bachovchin WW
    Science; 1997 Nov; 278(5340):1128-32. PubMed ID: 9353195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process.
    Ishida T
    Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration.
    Ekici OD; Paetzel M; Dalbey RE
    Protein Sci; 2008 Dec; 17(12):2023-37. PubMed ID: 18824507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus.
    Prasad L; Leduc Y; Hayakawa K; Delbaere LT
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):256-9. PubMed ID: 14747701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic hydroxyl/amine dyads within serine proteases.
    Paetzel M; Dalbey RE
    Trends Biochem Sci; 1997 Jan; 22(1):28-31. PubMed ID: 9020589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redesign of catalytic center of an enzyme: aspartic to serine proteinase.
    Tanaka T; Yada RY
    Biochem Biophys Res Commun; 2004 Oct; 323(3):947-53. PubMed ID: 15381092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and hydrolysis studies of a peptide containing the reactive triad of serine proteases with an associated linker to a dye on a solid phase support.
    Clough JM; Jones RV; McCann H; Morris DJ; Wills M
    Org Biomol Chem; 2003 May; 1(9):1486-97. PubMed ID: 12926277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold.
    Perona JJ; Craik CS
    J Biol Chem; 1997 Nov; 272(48):29987-90. PubMed ID: 9374470
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantumchemical study of the catalytic triad in subtilisin: the influence of amino acid substitutions on enzymatic activity.
    Baeten A; Maes D; Geerlings P
    J Theor Biol; 1998 Nov; 195(1):27-40. PubMed ID: 9802948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model study of the efficiency of the Asp-His-Ser triad.
    Lankau T; Yu CH
    J Comput Chem; 2010 Jul; 31(9):1853-9. PubMed ID: 20082386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phytaspases: aspartate-specific proteases involved in plant cell death].
    Chichkova NV; Galiullina RA; Beloshistov RE; Balakireva AV; Vartapetian AB
    Bioorg Khim; 2014; 40(6):658-64. PubMed ID: 25895361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glutamylendopeptidases from microorganisms--a new subfamily of chymotrypsin proteinases].
    Rudenskaia GN
    Bioorg Khim; 1998 Apr; 24(4):256-61. PubMed ID: 9612567
    [No Abstract]   [Full Text] [Related]  

  • 19. [Quantum chemical study of the "catalytic triad" of serine proteases].
    Voĭtiuk AA; Vasil'ev VV
    Mol Biol (Mosk); 1987; 21(3):807-13. PubMed ID: 3477691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine proteases: an ab initio molecular dynamics study.
    De Santis L; Carloni P
    Proteins; 1999 Dec; 37(4):611-8. PubMed ID: 10651276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.