BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 9078431)

  • 1. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients.
    Gu X; Spitzer NC
    Dev Neurosci; 1997; 19(1):33-41. PubMed ID: 9078431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients.
    Gu X; Spitzer NC
    Nature; 1995 Jun; 375(6534):784-7. PubMed ID: 7596410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous calcium transients regulate neuronal plasticity in developing neurons.
    Spitzer NC; Olson E; Gu X
    J Neurobiol; 1995 Mar; 26(3):316-24. PubMed ID: 7775965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous neuronal calcium spikes and waves during early differentiation.
    Gu X; Olson EC; Spitzer NC
    J Neurosci; 1994 Nov; 14(11 Pt 1):6325-35. PubMed ID: 7965039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons.
    Gleason EL; Spitzer NC
    J Neurophysiol; 1998 Jun; 79(6):2986-98. PubMed ID: 9636102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous activity: functions of calcium transients in neuronal differentiation.
    Spitzer NC
    Perspect Dev Neurobiol; 1995; 2(4):379-86. PubMed ID: 7757407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes.
    Ferrari MB; Rohrbough J; Spitzer NC
    Dev Biol; 1996 Sep; 178(2):484-97. PubMed ID: 8812144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients.
    Spitzer NC
    J Physiol Paris; 2002; 96(1-2):73-80. PubMed ID: 11755785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients.
    Gomez TM; Spitzer NC
    Nature; 1999 Jan; 397(6717):350-5. PubMed ID: 9950427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous activity-independent intracellular calcium signals in the developing spinal cord of the zebrafish embryo.
    Ashworth R; Bolsover SR
    Brain Res Dev Brain Res; 2002 Dec; 139(2):131-7. PubMed ID: 12480127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons.
    Watt SD; Gu X; Smith RD; Spitzer NC
    Mol Cell Neurosci; 2000 Oct; 16(4):376-87. PubMed ID: 11085875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of spontaneous calcium transients in nerve growth cones and their effect on growth cone migration.
    Gomez TM; Snow DM; Letourneau PC
    Neuron; 1995 Jun; 14(6):1233-46. PubMed ID: 7605634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture.
    Holliday J; Spitzer NC
    Dev Biol; 1990 Sep; 141(1):13-23. PubMed ID: 2167857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons.
    Spitzer NC; Debaca RC; Allen KA; Holliday J
    J Comp Neurol; 1993 Nov; 337(1):168-75. PubMed ID: 7506271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation.
    Spitzer NC
    Trends Neurosci; 1994 Mar; 17(3):115-8. PubMed ID: 7515527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding of neuronal differentiation by calcium transients.
    Spitzer NC; Lautermilch NJ; Smith RD; Gomez TM
    Bioessays; 2000 Sep; 22(9):811-7. PubMed ID: 10944583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purposeful patterns of spontaneous calcium transients in embryonic spinal neurons.
    Spitzer NC; Gu X
    Semin Cell Dev Biol; 1997 Feb; 8(1):13-9. PubMed ID: 15001100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging calcium dynamics in developing neurons.
    Gómez TM; Robles E
    Methods Enzymol; 2003; 361():407-22. PubMed ID: 12624922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes.
    Yao Y; Parker I
    J Physiol; 1994 Apr; 476(1):17-28. PubMed ID: 8046631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of calcineurin by growth cone calcium waves controls neurite extension.
    Lautermilch NJ; Spitzer NC
    J Neurosci; 2000 Jan; 20(1):315-25. PubMed ID: 10627609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.