These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 907913)

  • 21. Inactivation of the exogenous fatty acid utilization pathway leads to increased resistance to unsaturated fatty acids in Staphylococcus aureus.
    Krute CN; Ridder MJ; Seawell NA; Bose JL
    Microbiology (Reading); 2019 Feb; 165(2):197-207. PubMed ID: 30566075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for the synthesis of the multi-positional isomers of monounsaturated fatty acid in Methylococcus capsusatus by the anaerobic pathway.
    Jahnke LL; Diggs K
    FEMS Microbiol Lett; 1989; 58():183-8. PubMed ID: 11542184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of cleavage of Moloney murine leukemia virus gag and env coded precursor polyproteins by cerulenin.
    Ikuta K; Luftig RB
    Virology; 1986 Oct; 154(1):195-206. PubMed ID: 3489314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of tetracycline resistance in Staphylococcus aureus in the absence of lipid synthesis.
    Chopra I
    J Gen Microbiol; 1975 Dec; 91(2):433-6. PubMed ID: 1206379
    [No Abstract]   [Full Text] [Related]  

  • 25. Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria.
    Fang J; Kato C; Sato T; Chan O; McKay D
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Apr; 137(4):455-61. PubMed ID: 15081997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.
    Sen S; Sirobhushanam S; Johnson SR; Song Y; Tefft R; Gatto C; Wilkinson BJ
    PLoS One; 2016; 11(10):e0165300. PubMed ID: 27788193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of sporulation by cerulenin and its reversion by exogenous fatty acids in Saccharomyces cerevisiae.
    Ohno T; Awaya J; Omura S
    Antimicrob Agents Chemother; 1976 Jan; 9(1):42-8. PubMed ID: 769672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of cerulenin on growth and lipid metabolism of mycoplasmas.
    Rottem S; Barile MF
    Antimicrob Agents Chemother; 1976 Feb; 9(2):301-7. PubMed ID: 1267428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for attachment of fatty acid to varicella-zoster virus glycoproteins and effect of cerulenin on the maturation of varicella-zoster virus glycoproteins.
    Namazue J; Kato T; Okuno T; Shiraki K; Yamanishi K
    Intervirology; 1989; 30(5):268-77. PubMed ID: 2551842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enterotoxin B formation by fermentation mutants of Staphylococcus aureus.
    Altenbern RA
    Can J Microbiol; 1976 Feb; 22(2):182-8. PubMed ID: 1260525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin.
    Wang LH; Zeng XA; Wang MS; Brennan CS; Gong D
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):481-490. PubMed ID: 29138066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Staphylococcus aureus S-6: factors affecting its growth, enterotoxin B production and exoprotein formation.
    Nychas GJ; Tranter HS; Brehm RD; Board RG
    J Appl Bacteriol; 1991 Apr; 70(4):344-50. PubMed ID: 2055794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes.
    Zhu B; Xia X; Xia N; Zhang S; Guo X
    Environ Sci Technol; 2014 Apr; 48(7):4086-95. PubMed ID: 24579825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Derivation of high enterotoxin B-producing mutants of Staphylococcus aureus from the parent strains.
    Altenbern RA
    Appl Microbiol; 1975 Aug; 30(2):271-5. PubMed ID: 240311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane perturbation by cerulenin modulates glucosyltransferase secretion and acetate uptake by Streptococcus salivarius.
    Jacques NA
    J Gen Microbiol; 1983 Nov; 129(11):3293-302. PubMed ID: 6229601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of low water activity on staphylococcal enterotoxin A and B biosynthesis.
    Qi Y; Miller KJ
    J Food Prot; 2000 Apr; 63(4):473-8. PubMed ID: 10772212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dichlorophenylurea-resistant oxygen evolution in Chlorella after cerulenin treatment.
    Lehoczki E; Herczeg T; Szalay L
    Biochim Biophys Acta; 1979 Feb; 545(2):376-80. PubMed ID: 760783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioconversion and biosynthesis of nanaomycins using cerulenin, a specific inhibitor of fatty acid and polyketide biosyntheses.
    Kitao C; Tanaka H; Minami S; Omura S
    J Antibiot (Tokyo); 1980 Jul; 33(7):711-6. PubMed ID: 7410214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerulenin-induced changes in the lipopolysaccharide content and phospholipid composition of Proteus mirabilis.
    Rottem S; Markowitz O; Razin S
    Eur J Biochem; 1978 Apr; 85(2):451-6. PubMed ID: 348472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fat metabolism in higher plants. Production of short- and medium-chain acyl-acyl carrier protein by spinach stroma preparations treated with cerulenin.
    Packter NM; Stumpf PK
    Biochim Biophys Acta; 1975 Dec; 409(3):274-82. PubMed ID: 1203245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.