These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 9079373)
1. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. de Alba E; Jiménez MA; Rico M; Nieto JL Fold Des; 1996; 1(2):133-44. PubMed ID: 9079373 [TBL] [Abstract][Full Text] [Related]
2. Beta-hairpin formation in aqueous solution and in the presence of trifluoroethanol: a (1)H and (13)C nuclear magnetic resonance conformational study of designed peptides. Santiveri CM; Pantoja-Uceda D; Rico M; Jiménez MA Biopolymers; 2005 Oct; 79(3):150-62. PubMed ID: 16078190 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding. Griffiths-Jones SR; Maynard AJ; Searle MS J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702 [TBL] [Abstract][Full Text] [Related]
4. Cross-strand side-chain interactions versus turn conformation in beta-hairpins. de Alba E; Rico M; Jiménez MA Protein Sci; 1997 Dec; 6(12):2548-60. PubMed ID: 9416604 [TBL] [Abstract][Full Text] [Related]
5. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Blanco FJ; Serrano L Eur J Biochem; 1995 Jun; 230(2):634-49. PubMed ID: 7607238 [TBL] [Abstract][Full Text] [Related]
6. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Blanco FJ; Jiménez MA; Pineda A; Rico M; Santoro J; Nieto JL Biochemistry; 1994 May; 33(19):6004-14. PubMed ID: 8180228 [TBL] [Abstract][Full Text] [Related]
7. Role of beta-turn residues in beta-hairpin formation and stability in designed peptides. Ramírez-Alvarado M; Blanco FJ; Niemann H; Serrano L J Mol Biol; 1997 Nov; 273(4):898-912. PubMed ID: 9367780 [TBL] [Abstract][Full Text] [Related]
8. Position effect of cross-strand side-chain interactions on beta-hairpin formation. Santiveri CM; Rico M; Jiménez MA Protein Sci; 2000 Nov; 9(11):2151-60. PubMed ID: 11152125 [TBL] [Abstract][Full Text] [Related]
9. beta-hairpin folding and stability: molecular dynamics simulations of designed peptides in aqueous solution. Santiveri CM; Jiménez MA; Rico M; Van Gunsteren WF; Daura X J Pept Sci; 2004 Sep; 10(9):546-65. PubMed ID: 15473263 [TBL] [Abstract][Full Text] [Related]
10. The turn sequence directs beta-strand alignment in designed beta-hairpins. de Alba E; Rico M; Jiménez MA Protein Sci; 1999 Nov; 8(11):2234-44. PubMed ID: 10595526 [TBL] [Abstract][Full Text] [Related]
11. Conformational analysis of peptides corresponding to beta-hairpins and a beta-sheet that represent the entire sequence of the alpha-spectrin SH3 domain. Viguera AR; Jiménez MA; Rico M; Serrano L J Mol Biol; 1996 Jan; 255(3):507-21. PubMed ID: 8568894 [TBL] [Abstract][Full Text] [Related]
12. Proline-glutamate chimera's side chain conformation directs the type of β-hairpin structure. Maity J; Gerling UI; Vukelić S; Schäfer A; Koksch B Amino Acids; 2014 Jan; 46(1):177-86. PubMed ID: 24221353 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of the N-terminal beta-hairpin of ubiquitin by a terminal hydrophobic cluster. Riemen AJ; Waters ML Biopolymers; 2008; 90(3):394-8. PubMed ID: 17803200 [TBL] [Abstract][Full Text] [Related]
14. Beta-hairpin and beta-sheet formation in designed linear peptides. Ramírez-Alvarado M; Kortemme T; Blanco FJ; Serrano L Bioorg Med Chem; 1999 Jan; 7(1):93-103. PubMed ID: 10199660 [TBL] [Abstract][Full Text] [Related]
15. Tuning the beta-turn segment in designed peptide beta-hairpins: construction of a stable type I' beta-turn nucleus and hairpin-helix transition promoting segments. Rai R; Raghothama S; Sridharan R; Balaram P Biopolymers; 2007; 88(3):350-61. PubMed ID: 17154289 [TBL] [Abstract][Full Text] [Related]
16. Turn stability in beta-hairpin peptides: Investigation of peptides containing 3:5 type I G1 bulge turns. Blandl T; Cochran AG; Skelton NJ Protein Sci; 2003 Feb; 12(2):237-47. PubMed ID: 12538887 [TBL] [Abstract][Full Text] [Related]
17. Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Shin HC; Merutka G; Waltho JP; Tennant LL; Dyson HJ; Wright PE Biochemistry; 1993 Jun; 32(25):6356-64. PubMed ID: 8518281 [TBL] [Abstract][Full Text] [Related]
18. Interactions responsible for the pH dependence of the beta-hairpin conformational population formed by a designed linear peptide. de Alba E; Blanco FJ; Jiménez MA; Rico M; Nieto JL Eur J Biochem; 1995 Oct; 233(1):283-92. PubMed ID: 7588757 [TBL] [Abstract][Full Text] [Related]
19. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. Dyson HJ; Rance M; Houghten RA; Lerner RA; Wright PE J Mol Biol; 1988 May; 201(1):161-200. PubMed ID: 2843644 [TBL] [Abstract][Full Text] [Related]
20. CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. Jimenez MA; Bruix M; Gonzalez C; Blanco FJ; Nieto JL; Herranz J; Rico M Eur J Biochem; 1993 Feb; 211(3):569-81. PubMed ID: 8436116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]