These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 9079632)
1. A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. Yamazawa T; Takeshima H; Shimuta M; Iino M J Biol Chem; 1997 Mar; 272(13):8161-4. PubMed ID: 9079632 [TBL] [Abstract][Full Text] [Related]
2. Subtype specificity of the ryanodine receptor for Ca2+ signal amplification in excitation-contraction coupling. Yamazawa T; Takeshima H; Sakurai T; Endo M; Iino M EMBO J; 1996 Nov; 15(22):6172-7. PubMed ID: 8947039 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of dihydropyridine receptor II-III loop peptide regulates skeletal muscle calcium release channel function. Evidence for an essential role of the beta-OH group of Ser687. Lu X; Xu L; Meissner G J Biol Chem; 1995 Aug; 270(31):18459-64. PubMed ID: 7629172 [TBL] [Abstract][Full Text] [Related]
4. Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. Takeshima H; Yamazawa T; Ikemoto T; Takekura H; Nishi M; Noda T; Iino M EMBO J; 1995 Jul; 14(13):2999-3006. PubMed ID: 7621815 [TBL] [Abstract][Full Text] [Related]
5. Ca2+-induced Ca2+ release in Chinese hamster ovary (CHO) cells co-expressing dihydropyridine and ryanodine receptors. Suda N; Franzius D; Fleig A; Nishimura S; Bödding M; Hoth M; Takeshima H; Penner R J Gen Physiol; 1997 May; 109(5):619-31. PubMed ID: 9154908 [TBL] [Abstract][Full Text] [Related]
6. Functional nonequality of the cardiac and skeletal ryanodine receptors. Nakai J; Ogura T; Protasi F; Franzini-Armstrong C; Allen PD; Beam KG Proc Natl Acad Sci U S A; 1997 Feb; 94(3):1019-22. PubMed ID: 9023375 [TBL] [Abstract][Full Text] [Related]
7. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor. Bhat MB; Zhao J; Takeshima H; Ma J Biophys J; 1997 Sep; 73(3):1329-36. PubMed ID: 9284301 [TBL] [Abstract][Full Text] [Related]
8. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Tunwell RE; Wickenden C; Bertrand BM; Shevchenko VI; Walsh MB; Allen PD; Lai FA Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):477-87. PubMed ID: 8809036 [TBL] [Abstract][Full Text] [Related]
9. Deletion of amino acids 1641-2437 from the foot region of skeletal muscle ryanodine receptor alters the conduction properties of the Ca release channel. Bhat MB; Zhao J; Hayek S; Freeman EC; Takeshima H; Ma J Biophys J; 1997 Sep; 73(3):1320-8. PubMed ID: 9284300 [TBL] [Abstract][Full Text] [Related]
10. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nakai J; Dirksen RT; Nguyen HT; Pessah IN; Beam KG; Allen PD Nature; 1996 Mar; 380(6569):72-5. PubMed ID: 8598910 [TBL] [Abstract][Full Text] [Related]
11. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Meissner G; Lu X Biosci Rep; 1995 Oct; 15(5):399-408. PubMed ID: 8825041 [TBL] [Abstract][Full Text] [Related]
12. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970 [TBL] [Abstract][Full Text] [Related]
13. Functional and morphological features of skeletal muscle from mutant mice lacking both type 1 and type 3 ryanodine receptors. Ikemoto T; Komazaki S; Takeshima H; Nishi M; Noda T; Iino M; Endo M J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):305-12. PubMed ID: 9192302 [TBL] [Abstract][Full Text] [Related]
14. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124 [TBL] [Abstract][Full Text] [Related]
15. Calcium dependent activation of skeletal muscle Ca2+ release channel (ryanodine receptor) by calmodulin. Buratti R; Prestipino G; Menegazzi P; Treves S; Zorzato F Biochem Biophys Res Commun; 1995 Aug; 213(3):1082-90. PubMed ID: 7544580 [TBL] [Abstract][Full Text] [Related]
16. Calmodulin binding sites of the skeletal, cardiac, and brain ryanodine receptor Ca2+ channels: modulation by the catalytic subunit of cAMP-dependent protein kinase? Guerrini R; Menegazzi P; Anacardio R; Marastoni M; Tomatis R; Zorzato F; Treves S Biochemistry; 1995 Apr; 34(15):5120-9. PubMed ID: 7711031 [TBL] [Abstract][Full Text] [Related]
17. A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. Leong P; MacLennan DH J Biol Chem; 1998 Apr; 273(14):7791-4. PubMed ID: 9525869 [TBL] [Abstract][Full Text] [Related]
18. Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. Nakai J; Sekiguchi N; Rando TA; Allen PD; Beam KG J Biol Chem; 1998 May; 273(22):13403-6. PubMed ID: 9593671 [TBL] [Abstract][Full Text] [Related]
19. Involvement of lysine residues in the gating of the ryanodine receptor/Ca2+-release channel of skeletal muscle sarcoplasmic reticulum. Feng W; Shoshan-Barmatz V Eur J Biochem; 1997 Aug; 247(3):955-62. PubMed ID: 9288920 [TBL] [Abstract][Full Text] [Related]
20. The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor. Grabner M; Dirksen RT; Suda N; Beam KG J Biol Chem; 1999 Jul; 274(31):21913-9. PubMed ID: 10419512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]