These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9079785)

  • 21. Retinal ganglion cell death during regeneration of the frog optic nerve is not accompanied by appreciable cell loss from the inner nuclear layer.
    Darby JE; Carr RA; Beazley LD
    Anat Embryol (Berl); 1990; 182(5):487-92. PubMed ID: 2291493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electrophysiological study of early retinotectal projection patterns during optic nerve regeneration in Hyla moorei.
    Humphrey MF; Beazley LD
    Brain Res; 1982 May; 239(2):595-602. PubMed ID: 6284308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the optic chiasm of the leopard frog. I. Selective loss of visually elicited avoidance behavior after optic chiasm hemisection.
    Waldeck RF; Gruberg ER
    Brain Behav Evol; 1995; 46(2):84-94. PubMed ID: 7552225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and slow recovery phases of goldfish behavior after transection of the optic nerve revealed by a computer image processing system.
    Kato S; Devadas M; Okada K; Shimada Y; Ohkawa M; Muramoto K; Takizawa N; Matsukawa T
    Neuroscience; 1999; 93(3):907-14. PubMed ID: 10473256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superimposed maps of the monocular visual fields in the caudolateral optic tectum in the frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2005; 22(1):101-9. PubMed ID: 15842745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The eye in neurology: evaluation of sudden visual loss and diplopia--diagnostic pointers and pitfalls.
    Loong SC
    Ann Acad Med Singap; 2001 Mar; 30(2):143-7. PubMed ID: 11379411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The restoration of the ipsilateral visual projection following regeneration of the optic nerve in the frog.
    Gaze RM; Keating MJ
    Brain Res; 1970 Jul; 21(2):207-16. PubMed ID: 5454292
    [No Abstract]   [Full Text] [Related]  

  • 29. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the effects of degraded vision on sensorimotor performance.
    Sheppard WEA; Dickerson P; Baraas RC; Mon-Williams M; Barrett BT; Wilkie RM; Coats RO
    PLoS One; 2021; 16(11):e0258678. PubMed ID: 34748569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Failure to restore vision after optic nerve regeneration in reptiles: interspecies variation in response to axotomy.
    Dunlop SA; Tee LB; Stirling RV; Taylor AL; Runham PB; Barber AB; Kuchling G; Rodger J; Roberts JD; Harvey AR; Beazley LD
    J Comp Neurol; 2004 Oct; 478(3):292-305. PubMed ID: 15368531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Optic nerve regeneration by nerve transplantation].
    Fukuda Y
    Nippon Ganka Gakkai Zasshi; 1996 Dec; 100(12):956-71. PubMed ID: 9022308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field.
    Collin SP; Northcutt RG
    Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual fields and eye movements in herons (Ardeidae).
    Martin GR; Katzir G
    Brain Behav Evol; 1994; 44(2):74-85. PubMed ID: 7953610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of restriction of the binocular visual field on driving performance.
    Wood JM; Troutbeck R
    Ophthalmic Physiol Opt; 1992 Jul; 12(3):291-8. PubMed ID: 1454365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Guidance of regenerative axons in optic nerve regeneration in Bcl-2 overexpressing mice].
    Yang L; Chen DF
    Zhonghua Yan Ke Za Zhi; 2006 Feb; 42(2):100-3. PubMed ID: 16643722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Impact of Monocular and Integrated Binocular Visual Fields on Vision-related Quality of Life.
    Chun YS; Lee DI; Kwon J; Park IK
    J Glaucoma; 2017 Mar; 26(3):283-291. PubMed ID: 28079653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields.
    Wylie DR; Frost BJ
    J Neurophysiol; 1999 Jan; 81(1):267-76. PubMed ID: 9914287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.