These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9079911)

  • 41. Nickel-binding proteins.
    Wattt RK; Ludden PW
    Cell Mol Life Sci; 1999 Nov; 56(7-8):604-25. PubMed ID: 11212309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum.
    Ensign SA; Bonam D; Ludden PW
    Biochemistry; 1989 Jun; 28(12):4968-73. PubMed ID: 2504284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum.
    Loke HK; Lindahl PA
    J Inorg Biochem; 2003 Jan; 93(1-2):33-40. PubMed ID: 12538050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic analysis of Carboxydothermus hydrogenoformans carbon monoxide dehydrogenase genes cooF and cooS.
    González JM; Robb FT
    FEMS Microbiol Lett; 2000 Oct; 191(2):243-7. PubMed ID: 11024270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis of cyanide inhibition of Ni, Fe-containing carbon monoxide dehydrogenase.
    Jeoung JH; Dobbek H
    J Am Chem Soc; 2009 Jul; 131(29):9922-3. PubMed ID: 19583208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: kinetic characterization and reductant requirement.
    Ensign SA; Campbell MJ; Ludden PW
    Biochemistry; 1990 Feb; 29(8):2162-8. PubMed ID: 2109635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding of CO to structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase.
    Harrop TC; Olmstead MM; Mascharak PK
    Chem Commun (Camb); 2004 Aug; (15):1744-5. PubMed ID: 15278165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Halbleib CM; Ludden PW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7690-3. PubMed ID: 11416171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase.
    Wittenborn EC; Cohen SE; Merrouch M; Léger C; Fourmond V; Dementin S; Drennan CL
    J Biol Chem; 2019 Aug; 294(35):13017-13026. PubMed ID: 31296570
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster.
    Inoue T; Takao K; Yoshida T; Wada K; Daifuku T; Yoneda Y; Fukuyama K; Sako Y
    Biochem Biophys Res Commun; 2013 Nov; 441(1):13-7. PubMed ID: 24120497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Solvent-Exposed Cysteine Forms a Peculiar Ni
    Alfano M; Veronesi G; Musiani F; Zambelli B; Signor L; Proux O; Rovezzi M; Ciurli S; Cavazza C
    Chemistry; 2019 Dec; 25(67):15351-15360. PubMed ID: 31486181
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide.
    Ensign SA
    Biochemistry; 1995 Apr; 34(16):5372-8. PubMed ID: 7727395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Ni-containing carbon monoxide dehydrogenase family: light at the end of the tunnel?
    Lindahl PA
    Biochemistry; 2002 Feb; 41(7):2097-105. PubMed ID: 11841199
    [No Abstract]   [Full Text] [Related]  

  • 55. Energetics for the Mechanism of Nickel-Containing Carbon Monoxide Dehydrogenase.
    Liao RZ; Siegbahn PEM
    Inorg Chem; 2019 Jun; 58(12):7931-7938. PubMed ID: 31141352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon monoxide dehydrogenase from Rhodospirillum rubrum: effect of redox potential on catalysis.
    Feng J; Lindahl PA
    Biochemistry; 2004 Feb; 43(6):1552-9. PubMed ID: 14769031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli.
    Maier T; Lottspeich F; Böck A
    Eur J Biochem; 1995 May; 230(1):133-8. PubMed ID: 7601092
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct electrochemical studies of hydrogenase and CO dehydrogenase.
    Smith ET; Ensign SA; Ludden PW; Feinberg BA
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):181-5. PubMed ID: 1637298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase.
    Tan X; Kagiampakis I; Surovtsev IV; Demeler B; Lindahl PA
    Biochemistry; 2007 Oct; 46(41):11606-13. PubMed ID: 17887777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO
    Contaldo U; Curtil M; Pérard J; Cavazza C; Le Goff A
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202117212. PubMed ID: 35274429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.