These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9080180)

  • 1. Molecular dynamics simulations of apocytochrome b562--the highly ordered limit of molten globules.
    Laidig KE; Daggett V
    Fold Des; 1996; 1(5):335-46. PubMed ID: 9080180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adiabatic compressibility of molten globules.
    Nölting B; Sligar SG
    Biochemistry; 1993 Nov; 32(46):12319-23. PubMed ID: 8241118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of apocytochrome b562.
    Feng Y; Sligar SG; Wand AJ
    Nat Struct Biol; 1994 Jan; 1(1):30-5. PubMed ID: 7656004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562.
    Feng YQ; Sligar SG
    Biochemistry; 1991 Oct; 30(42):10150-5. PubMed ID: 1931945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local dynamics and stability of apocytochrome b562 examined by hydrogen exchange.
    Fuentes EJ; Wand AJ
    Biochemistry; 1998 Mar; 37(11):3687-98. PubMed ID: 9521687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H and 15N NMR resonance assignments and preliminary structural characterization of Escherichia coli apocytochrome b562.
    Feng YQ; Wand AJ; Sligar SG
    Biochemistry; 1991 Aug; 30(31):7711-7. PubMed ID: 1868051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A differential scanning calorimetric study of the thermal unfolding of apo- and holo-cytochrome b562.
    Robinson CR; Liu Y; O'Brien R; Sligar SG; Sturtevant JM
    Protein Sci; 1998 Apr; 7(4):961-5. PubMed ID: 9568902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The solution structure of oxidized Escherichia coli cytochrome b562.
    Arnesano F; Banci L; Bertini I; Faraone-Mennella J; Rosato A; Barker PD; Fersht AR
    Biochemistry; 1999 Jul; 38(27):8657-70. PubMed ID: 10393541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of heme binding to native and denatured states of cytochrome b562.
    Robinson CR; Liu Y; Thomson JA; Sturtevant JM; Sligar SG
    Biochemistry; 1997 Dec; 36(51):16141-6. PubMed ID: 9405047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding cytochromes c-b
    Kozak JJ; Gray HB; Garza-López RA
    J Inorg Biochem; 2020 Oct; 211():111209. PubMed ID: 32818710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural consequences of heme removal: molecular dynamics simulations of rat and bovine apocytochrome b5.
    Storch EM; Daggett V
    Biochemistry; 1996 Sep; 35(36):11596-604. PubMed ID: 8794739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome b562 folding triggered by electron transfer: approaching the speed limit for formation of a four-helix-bundle protein.
    Wittung-Stafshede P; Lee JC; Winkler JR; Gray HB
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6587-90. PubMed ID: 10359755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and structure determination of an equilibrium unfolding intermediate of Rd-apocytochrome b562: native fold with non-native hydrophobic interactions.
    Feng H; Vu ND; Bai Y
    J Mol Biol; 2004 Nov; 343(5):1477-85. PubMed ID: 15491625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C terminus of apocytochrome b562 undergoes fast motions and slow exchange among ordered conformations resembling the folded state.
    D'Amelio N; Bonvin AM; Czisch M; Barker P; Kaptein R
    Biochemistry; 2002 Apr; 41(17):5505-14. PubMed ID: 11969411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined structure of cytochrome b562 from Escherichia coli at 1.4 A resolution.
    Hamada K; Bethge PH; Mathews FS
    J Mol Biol; 1995 Apr; 247(5):947-62. PubMed ID: 7723042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.
    Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD
    J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathodic photocurrent generation from zinc-substituted cytochrome b562 assemblies immobilized on an apocytochrome b562-modified gold electrode.
    Onoda A; Kakikura Y; Hayashi T
    Dalton Trans; 2013 Dec; 42(45):16102-7. PubMed ID: 24002580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refolding of cytochrome b562 and its structural stabilization by introducing a disulfide bond.
    Kobayashi Y; Sasabe H; Saitô N
    J Protein Chem; 1993 Apr; 12(2):121-31. PubMed ID: 8489700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of heme axial ligands in the conformational stability of the native and molten globule states of horse cytochrome c.
    Hamada D; Kuroda Y; Kataoka M; Aimoto S; Yoshimura T; Goto Y
    J Mol Biol; 1996 Feb; 256(1):172-86. PubMed ID: 8609608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of cytochrome b562 to c-type cytochromes.
    Barker PD; Nerou EP; Freund SM; Fearnley IM
    Biochemistry; 1995 Nov; 34(46):15191-203. PubMed ID: 7578134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.