These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9080200)

  • 1. An inverse correlation between loop length and stability in a four-helix-bundle protein.
    Nagi AD; Regan L
    Fold Des; 1997; 2(1):67-75. PubMed ID: 9080200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude.
    Munson M; Anderson KS; Regan L
    Fold Des; 1997; 2(1):77-87. PubMed ID: 9080201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using loop length variants to dissect the folding pathway of a four-helix-bundle protein.
    Nagi AD; Anderson KS; Regan L
    J Mol Biol; 1999 Feb; 286(1):257-65. PubMed ID: 9931264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redesigning the topology of a four-helix-bundle protein: monomeric Rop.
    Predki PF; Regan L
    Biochemistry; 1995 Aug; 34(31):9834-9. PubMed ID: 7543279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the diffusion-collision model to the folding of three-helix bundle proteins.
    Islam SA; Karplus M; Weaver DL
    J Mol Biol; 2002 Apr; 318(1):199-215. PubMed ID: 12054779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamine, alanine or glycine repeats inserted into the loop of a protein have minimal effects on stability and folding rates.
    Ladurner AG; Fersht AR
    J Mol Biol; 1997 Oct; 273(1):330-7. PubMed ID: 9367765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of loop closure propensity in the refolding of Rop protein probed by molecular dynamics simulations.
    Shukla RT; Baliga C; Sasidhar YU
    J Mol Graph Model; 2013 Mar; 40():10-21. PubMed ID: 23340205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.
    Dolphin GT; Baltzer L
    Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A designed well-folded monomeric four-helix bundle protein prepared by Fmoc solid-phase peptide synthesis and native chemical ligation.
    Dolphin GT
    Chemistry; 2006 Feb; 12(5):1436-47. PubMed ID: 16283689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cavity-creating mutations on conformational stability and structure of the dimeric 4-alpha-helical protein ROP: thermal unfolding studies.
    Steif C; Hinz HJ; Cesareni G
    Proteins; 1995 Sep; 23(1):83-96. PubMed ID: 8539253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimer-to-tetramer transformation: loop excision dramatically alters structure and stability of the ROP four alpha-helix bundle protein.
    Lassalle MW; Hinz HJ; Wenzel H; Vlassi M; Kokkinidis M; Cesareni G
    J Mol Biol; 1998 Jun; 279(4):987-1000. PubMed ID: 9642076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and thermodynamics of folding of a de novo designed four-helix bundle protein.
    Guo Z; Thirumalai D
    J Mol Biol; 1996 Oct; 263(2):323-43. PubMed ID: 8913310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.
    Peterson RW; Nicholson EM; Thapar R; Klevit RE; Scholtz JM
    J Mol Biol; 1999 Mar; 286(5):1609-19. PubMed ID: 10064718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Configurational entropy modulates the mechanical stability of protein GB1.
    Li H; Wang HC; Cao Y; Sharma D; Wang M
    J Mol Biol; 2008 Jun; 379(4):871-80. PubMed ID: 18472109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A minimum folding unit in the ankyrin repeat protein p16(INK4).
    Zhang B; Peng Zy
    J Mol Biol; 2000 Jun; 299(4):1121-32. PubMed ID: 10843863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability.
    Ruvinov S; Wang L; Ruan B; Almog O; Gilliland GL; Eisenstein E; Bryan PN
    Biochemistry; 1997 Aug; 36(34):10414-21. PubMed ID: 9265621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design of native proteins: characterization of proteins intended to fold into antiparallel, rop-like, four-helix bundles.
    Betz SF; Liebman PA; DeGrado WF
    Biochemistry; 1997 Mar; 36(9):2450-8. PubMed ID: 9054549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.