These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9080295)
1. FK506 prevents induction of rat experimental autoimmune myasthenia gravis. Yoshikawa H; Iwasa K; Satoh K; Takamori M J Autoimmun; 1997 Feb; 10(1):11-6. PubMed ID: 9080295 [TBL] [Abstract][Full Text] [Related]
2. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides. Fujii Y; Lindstrom J J Immunol; 1988 Mar; 140(6):1830-7. PubMed ID: 2450133 [TBL] [Abstract][Full Text] [Related]
3. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope. Atassi MZ; Oshima M; Deitiker P Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597 [TBL] [Abstract][Full Text] [Related]
4. A 17-Mer self-peptide of acetylcholine receptor binds to B cell MHC class II, activates helper T cells, and stimulates autoantibody production and electrophysiologic signs of myasthenia gravis. Yoshikawa H; Lambert EH; Walser-Kuntz DR; Yasukawa Y; McCormick DJ; Lennon VA J Immunol; 1997 Aug; 159(3):1570-7. PubMed ID: 9233656 [TBL] [Abstract][Full Text] [Related]
5. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the alpha subunits of Torpedo californica and murine acetylcholine receptors. Bellone M; Ostlie N; Lei S; Conti-Tronconi BM Eur J Immunol; 1991 Oct; 21(10):2303-10. PubMed ID: 1680694 [TBL] [Abstract][Full Text] [Related]
6. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. Im SH; Barchan D; Fuchs S; Souroujon MC J Clin Invest; 1999 Dec; 104(12):1723-30. PubMed ID: 10606626 [TBL] [Abstract][Full Text] [Related]
7. T cell reactivity to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis. Wang ZY; Qiao J; Melms A; Link H Cell Immunol; 1993 Dec; 152(2):394-404. PubMed ID: 8258147 [TBL] [Abstract][Full Text] [Related]
8. B-cell activation in vitro by helper T cells specific to region alpha 146-162 of Torpedo californica nicotinic acetylcholine receptor. Rosenberg JS; Oshima M; Atassi MZ J Immunol; 1996 Oct; 157(7):3192-9. PubMed ID: 8816433 [TBL] [Abstract][Full Text] [Related]
9. Oral administration of a dual analog of two myasthenogenic T cell epitopes down-regulates experimental autoimmune myasthenia gravis in mice. Paas-Rozner M; Dayan M; Paas Y; Changeux JP; Wirguin I; Sela M; Mozes E Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2168-73. PubMed ID: 10681457 [TBL] [Abstract][Full Text] [Related]
10. Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors. Araga S; Galin FS; Kishimoto M; Adachi A; Blalock JB J Immunol; 1996 Jul; 157(1):386-92. PubMed ID: 8683141 [TBL] [Abstract][Full Text] [Related]
11. Lewis rats given antibodies against denatured acetylcholine receptor become resistant to induction of experimental autoimmune myasthenia gravis. Krolick KA; Yeh TM; Edlund SA Cell Immunol; 1996 Aug; 172(1):10-20. PubMed ID: 8806801 [TBL] [Abstract][Full Text] [Related]
12. T cell epitopes in experimental autoimmune myasthenia gravis of the rat: strain-specific epitopes and cross-reaction between two distinct segments of the alpha chain of the nicotinic acetylcholine receptor (Torpedo californica). Zhang Y; Barkas T; Juillerat M; Schwendimann B; Wekerle H Eur J Immunol; 1988 Apr; 18(4):551-7. PubMed ID: 2452743 [TBL] [Abstract][Full Text] [Related]
13. Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis. Okumura S; McIntosh K; Drachman DB Ann Neurol; 1994 Nov; 36(5):704-13. PubMed ID: 7979216 [TBL] [Abstract][Full Text] [Related]
14. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. Balasa B; Deng C; Lee J; Christadoss P; Sarvetnick N J Immunol; 1998 Sep; 161(6):2856-62. PubMed ID: 9743346 [TBL] [Abstract][Full Text] [Related]
15. Experimental models of myasthenia gravis: lessons in autoimmunity and progress toward better forms of treatment. Pachner AR Yale J Biol Med; 1987; 60(2):169-77. PubMed ID: 3495075 [TBL] [Abstract][Full Text] [Related]
16. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor. Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218 [TBL] [Abstract][Full Text] [Related]
17. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis. Xiao BG; Duan RS; Zhu WH; Lu CZ Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165 [TBL] [Abstract][Full Text] [Related]
18. Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T cells. Xu L; Villain M; Galin FS; Araga S; Blalock JE Cell Immunol; 2001 Mar; 208(2):107-14. PubMed ID: 11333143 [TBL] [Abstract][Full Text] [Related]
19. Myasthenogenicity of human acetylcholine receptor synthetic alpha-subunit peptide 125-147 does not require intramolecular disulfide cyclization. McCormick DJ; Griesmann GE; Huang ZX; Lambert EH; Lennon VA J Immunol; 1987 Oct; 139(8):2615-9. PubMed ID: 3498765 [TBL] [Abstract][Full Text] [Related]
20. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells. Duan RS; Adikari SB; Huang YM; Link H; Xiao BG Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]