These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9080306)

  • 1. Human red blood cell shape and volume are changed by physiological levels of hydrostatic pressure.
    Barshtein G; Bergelson L; Gratton E; Yedgar S
    J Basic Clin Physiol Pharmacol; 1996; 7(4):321-9. PubMed ID: 9080306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane lipid order of human red blood cells is altered by physiological levels of hydrostatic pressure.
    Barshtein G; Bergelson L; Dagan A; Gratton E; Yedgar S
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H538-43. PubMed ID: 9038976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell aggregability is enhanced by physiological levels of hydrostatic pressure.
    Chen S; Gavish B; Barshtein G; Mahler Y; Yedgar S
    Biochim Biophys Acta; 1994 Jun; 1192(2):247-52. PubMed ID: 8018705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of elevated hydrostatic pressure on the shape of human erythrocytes].
    Kuznetsov AA; Terent'ev AN
    Biofizika; 1988; 33(3):475-8. PubMed ID: 3167110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesiculation induced by hydrostatic pressure in human erythrocytes.
    Yamaguchi T; Kajikawa T; Kimoto E
    J Biochem; 1991 Sep; 110(3):355-9. PubMed ID: 1769962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies.
    Geekiyanage NM; Balanant MA; Sauret E; Saha S; Flower R; Lim CT; Gu Y
    PLoS One; 2019; 14(4):e0215447. PubMed ID: 31002688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G; Jaimovich E; Lingsch C; Behn C
    Biochim Biophys Acta; 1982 Jul; 689(2):219-29. PubMed ID: 7115708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M; Vrhovec S; Brumen M; Svetina S; Zeks B
    Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relations between membrane monolayers in some red cell shape transformations.
    Beck JS
    J Theor Biol; 1978 Dec; 75(4):487-501. PubMed ID: 745454
    [No Abstract]   [Full Text] [Related]  

  • 10. Requirement of cytoplasmic components for lidocaine-induced shape change in human erythrocytes.
    Nishiguchi E; Sindo J; Hamasaki N
    Biochim Biophys Acta; 1993 Mar; 1176(1-2):95-105. PubMed ID: 8452885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptations to pressure in the RBC metabolism of diving mammals.
    Castellini MA; Castellini JM; Rivera PM
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jul; 129(4):751-7. PubMed ID: 11440862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apoptosis and red blood cell echinocytosis: common features.
    Chukhlovin AB
    Scanning Microsc; 1996; 10(3):795-803; discussion 803-4. PubMed ID: 9813640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge.
    Nwafor A; Coakley WT
    Biochem Pharmacol; 1985 Sep; 34(18):3329-36. PubMed ID: 4038341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation.
    Artmann GM; Sung KL; Horn T; Whittemore D; Norwich G; Chien S
    Biophys J; 1997 Mar; 72(3):1434-41. PubMed ID: 9138589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical and morphological changes of human erythrocytes under high hydrostatic pressure followed by dielectric spectroscopy.
    Asami K; Yamaguchi T
    Ann Biomed Eng; 1999; 27(4):427-35. PubMed ID: 10468227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex.
    Sheetz MP; Singer SJ
    J Cell Biol; 1977 Jun; 73(3):638-46. PubMed ID: 873993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high hydrostatic pressure on 'passive' monovalent cation transport in human red cells.
    Hall AC; Ellory JC
    J Membr Biol; 1986; 94(1):1-17. PubMed ID: 3806656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscopic study of hemolysis: a proposal of formation of a weak structural region in the erythrocyte membrane.
    Lin PS
    Cell Biol Int Rep; 1981 Feb; 5(2):159-68. PubMed ID: 7226247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes.
    Pestonjamasp KN; Mehta NG
    Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stabilizing effect of an oligomeric proanthocyanidin on red blood cell membrane structure of poorly controlled Type II diabetes.
    Visser J; van Staden PJ; Soma P; Buys AV; Pretorius E
    Nutr Diabetes; 2017 May; 7(5):e275. PubMed ID: 28504711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.