These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Acoustic properties of atherosclerosis of human aorta obtained with high-frequency ultrasound. Saijo Y; Sasaki H; Okawai H; Nitta S; Tanaka M Ultrasound Med Biol; 1998 Sep; 24(7):1061-4. PubMed ID: 9809640 [TBL] [Abstract][Full Text] [Related]
5. Tissue characterization of myocardial cells by use of high-frequency acoustic microscopy: differential myocyte sound speed and its transmural variation in normal, pressure-overload hypertrophic, and amyloid myocardium. Masugata H; Mizushige K; Senda S; Kinoshita A; Lu X; Sakamoto H; Sakamoto S; Matsuo H Angiology; 1999 Oct; 50(10):837-45. PubMed ID: 10535723 [TBL] [Abstract][Full Text] [Related]
6. Acoustic properties of aortic aneurysm obtained with scanning acoustic microscopy. Saijo Y; Miyakawa T; Sasaki H; Tanaka M; Nitta S Ultrasonics; 2004 Apr; 42(1-9):695-8. PubMed ID: 15047369 [TBL] [Abstract][Full Text] [Related]
7. Structural remodeling of human myocardial tissue after infarction. Quantification with ultrasonic backscatter. Wickline SA; Verdonk ED; Wong AK; Shepard RK; Miller JG Circulation; 1992 Jan; 85(1):259-68. PubMed ID: 1728457 [TBL] [Abstract][Full Text] [Related]
8. Non-contact acoustic method for the simultaneous measurement of thickness and acoustic properties of biological tissues. Okawai H; Tanaka M; Dunn F Ultrasonics; 1990 Nov; 28(6):401-10. PubMed ID: 2238246 [TBL] [Abstract][Full Text] [Related]
10. Quantitative ultrasonic assessment of normal and ischaemic myocardium with an acoustic microscope: relationship to integrated backscatter. Sagar KB; Agemura DH; O'Brien WD; Pelc LR; Rhyne TL; Wann LS; Komorowski RA; Warltier DC Cardiovasc Res; 1990 Jun; 24(6):447-55. PubMed ID: 2201447 [TBL] [Abstract][Full Text] [Related]
11. Acoustic properties of dialysed kidney by scanning acoustic microscopy. Sasaki H; Saijo Y; Tanaka M; Nitta S; Terasawa Y; Yambe T; Taguma Y Nephrol Dial Transplant; 1997 Oct; 12(10):2151-4. PubMed ID: 9351081 [TBL] [Abstract][Full Text] [Related]
12. Identification of human myocardial infarction in vitro based on the frequency dependence of ultrasonic backscatter. Wickline SA; Verdonk ED; Sobel BE; Miller JG J Acoust Soc Am; 1992 May; 91(5):3018-25. PubMed ID: 1629493 [TBL] [Abstract][Full Text] [Related]
13. Visualization of myocardial cellular architecture using acoustic microscopy. Chandraratna PA; Choudhary S; Jones JP; Chandrasoma P; Kapoor A; Gallet J Am Heart J; 1992 Nov; 124(5):1358-64. PubMed ID: 1442507 [TBL] [Abstract][Full Text] [Related]
14. [Quantitative integrated backscatter characteristics in the normal and infarcted canine myocardium]. Shimazu T; Nishioka H; Fujiwara M; Matsuyama T; Ozaki H; Hamanaka Y; Kitabatake A; Inoue M; Kamada T; Matsumoto M J Cardiogr; 1986 Dec; 16(4):799-808. PubMed ID: 3323322 [TBL] [Abstract][Full Text] [Related]
15. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence. Brewin MP; Pike LC; Rowland DE; Birch MJ Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021 [TBL] [Abstract][Full Text] [Related]
16. Characterization of collagen by high-frequency ultrasound: evidence for different acoustic properties based on collagen fiber morphologic characteristics. Chandraratna PA; Whittaker P; Chandraratna PM; Gallet J; Kloner RA; Hla A Am Heart J; 1997 Mar; 133(3):364-8. PubMed ID: 9060808 [TBL] [Abstract][Full Text] [Related]
17. Estimating myocardial attenuation from M-mode ultrasonic backscatter. Baldwin SL; Marutyan KR; Yang M; Wallace KD; Holland MR; Miller JG Ultrasound Med Biol; 2005 Apr; 31(4):477-84. PubMed ID: 15831326 [TBL] [Abstract][Full Text] [Related]