These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9081615)

  • 1. Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography.
    Doyon J; Owen AM; Petrides M; Sziklas V; Evans AC
    Eur J Neurosci; 1996 Apr; 8(4):637-48. PubMed ID: 9081615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study.
    Honda M; Deiber MP; Ibáñez V; Pascual-Leone A; Zhuang P; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2159-73. PubMed ID: 9827775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor learning in man: a positron emission tomographic study.
    Seitz RJ; Roland E; Bohm C; Greitz T; Stone-Elander S
    Neuroreport; 1990 Sep; 1(1):57-60. PubMed ID: 2129858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice.
    van Mier H; Tempel LW; Perlmutter JS; Raichle ME; Petersen SE
    J Neurophysiol; 1998 Oct; 80(4):2177-99. PubMed ID: 9772270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of regional brain activation associated with different forms of motor learning.
    Ghilardi M; Ghez C; Dhawan V; Moeller J; Mentis M; Nakamura T; Antonini A; Eidelberg D
    Brain Res; 2000 Jul; 871(1):127-45. PubMed ID: 10882792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence.
    Doyon J; Gaudreau D; Laforce R; Castonguay M; Bédard PJ; Bédard F; Bouchard JP
    Brain Cogn; 1997 Jul; 34(2):218-45. PubMed ID: 9220087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements.
    Doyon J; Laforce R; Bouchard G; Gaudreau D; Roy J; Poirier M; Bédard PJ; Bédard F; Bouchard JP
    Neuropsychologia; 1998 Jul; 36(7):625-41. PubMed ID: 9723934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.
    Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M
    J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Callosal and cortical contribution to procedural learning.
    de Guise E; del Pesce M; Foschi N; Quattrini A; Papo I; Lassonde M
    Brain; 1999 Jun; 122 ( Pt 6)():1049-62. PubMed ID: 10356058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain regions responsive to novelty in the absence of awareness.
    Berns GS; Cohen JD; Mintun MA
    Science; 1997 May; 276(5316):1272-5. PubMed ID: 9157889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity in the parietal area during visuomotor learning with optical rotation.
    Inoue K; Kawashima R; Satoh K; Kinomura S; Goto R; Sugiura M; Ito M; Fukuda H
    Neuroreport; 1997 Dec; 8(18):3979-83. PubMed ID: 9462478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning.
    Tzvi E; Verleger R; Münte TF; Krämer UM
    Neuroimage; 2016 Nov; 141():60-70. PubMed ID: 27403869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling.
    Tzvi E; Stoldt A; Witt K; Krämer UM
    Neuroimage; 2015 Nov; 122():52-64. PubMed ID: 26244275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task.
    Beauchamp MH; Dagher A; Aston JA; Doyon J
    Neuroimage; 2003 Nov; 20(3):1649-60. PubMed ID: 14642475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skill learning.
    Doyon J
    Int Rev Neurobiol; 1997; 41():273-94. PubMed ID: 9378592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning.
    Lang W; Lang M; Podreka I; Steiner M; Uhl F; Suess E; Müller C; Deecke L
    Exp Brain Res; 1988; 71(2):353-64. PubMed ID: 3262531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual feedback about time estimation is related to a right hemisphere activation measured by PET.
    Brunia CH; de Jong BM; van den Berg-Lenssen MM; Paans AM
    Exp Brain Res; 2000 Feb; 130(3):328-37. PubMed ID: 10706432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.