These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9082145)

  • 21. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.
    Bender GR; Sutton SV; Marquis RE
    Infect Immun; 1986 Aug; 53(2):331-8. PubMed ID: 3015800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An in vitro investigation of the cariogenic potential of oral streptococci.
    Chestnutt IG; MacFarlane TW; Stephen KW
    Arch Oral Biol; 1994 Jul; 39(7):589-93. PubMed ID: 7945017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of mutans streptococci by intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Rupf S; Breitung K; Schellenberger W; Merte K; Kneist S; Eschrich K
    Oral Microbiol Immunol; 2005 Oct; 20(5):267-73. PubMed ID: 16101961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans.
    Tamura S; Yonezawa H; Motegi M; Nakao R; Yoneda S; Watanabe H; Yamazaki T; Senpuku H
    Oral Microbiol Immunol; 2009 Apr; 24(2):152-61. PubMed ID: 19239643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin.
    Bender GR; Thibodeau EA; Marquis RE
    J Dent Res; 1985 Feb; 64(2):90-5. PubMed ID: 2579114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the capacity of oral streptococci to produce hydrogen peroxide.
    García-Mendoza A; Liébana J; Castillo AM; de la Higuera A; Piédrola G
    J Med Microbiol; 1993 Dec; 39(6):434-9. PubMed ID: 8246261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.
    Hamilton IR; Svensäter G
    Oral Microbiol Immunol; 1998 Oct; 13(5):292-300. PubMed ID: 9807121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: a possible ecological determinant in dental plaque.
    Horiuchi M; Washio J; Mayanagi H; Takahashi N
    Oral Microbiol Immunol; 2009 Aug; 24(4):319-24. PubMed ID: 19572895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Streptococcus oligofermentans sucrose metabolism demonstrates reduced pyruvic and lactic acid production.
    Bao XD; Yue L; Gao XJ
    Chin Med J (Engl); 2011 Nov; 124(21):3499-503. PubMed ID: 22340167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of pH-driven disruption of oral microbial communities in vitro.
    Bradshaw DJ; Marsh PD
    Caries Res; 1998; 32(6):456-62. PubMed ID: 9745120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acid production from Lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli.
    Edwardsson S; Birkhed D; Mejàre B
    Acta Odontol Scand; 1977; 35(5):257-63. PubMed ID: 21508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of the salivary glycoprotein EP-GP with the bacterium Streptococcus salivarius HB.
    Schenkels LC; Ligtenberg AJ; Veerman EC; Van Nieuw Amerongen A
    J Dent Res; 1993 Dec; 72(12):1559-65. PubMed ID: 8254122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-vitro acid production by the oral bacterium Streptococcus mutans 10449 in various concentrations of glucose, fructose and sucrose.
    Duguid R
    Arch Oral Biol; 1985; 30(4):319-24. PubMed ID: 3857902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid procedure for acid adaptation of oral lactic-acid bacteria and further characterization of the response.
    Ma Y; Curran TM; Marquis RE
    Can J Microbiol; 1997 Feb; 43(2):143-8. PubMed ID: 9090104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of adsorption on the acid production of caries and noncaries-producing streptococci.
    Berry CW; Henry CA
    J Dent Res; 1977 Oct; 56(10):1193-1200. PubMed ID: 272380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy.
    Liu L; Wang M; Du G; Chen J
    Lett Appl Microbiol; 2008 Mar; 46(3):383-8. PubMed ID: 18221275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation.
    Keevil CW; Marsh PD; Ellwood DC
    J Bacteriol; 1984 Feb; 157(2):560-7. PubMed ID: 6693352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro studies of growth and competition between S. salivarius TOVE-R and mutans streptococci.
    Kurasz AB; Tanzer JM; Bazer L; Savoldi E
    J Dent Res; 1986 Sep; 65(9):1149-53. PubMed ID: 3461031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between the ability of oral streptococci to interact with platelet glycoprotein Ibalpha and with the salivary low-molecular-weight mucin, MG2.
    Plummer C; Douglas CW
    FEMS Immunol Med Microbiol; 2006 Dec; 48(3):390-9. PubMed ID: 17069618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Difference in amounts between titratable acid and total carboxylic acids produced by oral streptococci during sugar metabolism.
    Iwami Y; Hata S; Takahashi N; Yamada T
    J Dent Res; 1989 Jan; 68(1):16-9. PubMed ID: 2910954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.